Discusses 11 strategies where methods and guidelines should be applied now by the building services engineer in designing new ventilation systems or retrofitting existing systems.
Treats major design and construction actions that can be taken in houses to limit conduction losses, increase heating performance, reduce energy losses through windows and provide adequate ventilation air - super insulation, high performance furnace or boiler, high performance windows and controlled ventilation. Discusses in some detail how controlling indoor air pollutants at source is the preferred approach to maintaining indoor air quality. Illustrates diagrammatically and explains how a house functions under natural ventilation conditions.
Discusses the various causes of unwanted air infiltration in dwellings. Illustrates diagrammatically the commonest structural faults leading to adventitious air infiltration and gives methods of overcoming them. Notes the average cost of such improvements.
In December 1985 the Federal Republic of Germany joined the International Energy Agency's Annex V, the Air Infiltration Centre, as the twelfth participant. This report describes and summarises German research and development activities in the areas of ventilation, air infiltration andindoor air quality.
Describes the network procedure for calculating the most energy-conserving and economical form of natural ventilation of a building. Provides application examples in the form of the determination of mass air flows through doors and windows and cracks in industrial work sheds. Provides the results of a calculation of crack ventilation in winter with mechanical ventilation with positive pressure, plus optimisation of air flow through a cooling bed for hot rolled steel sections.
One of a series of articles focussing on problem areas in buildings. 1) Examines condensation risks in buildings. Treats condensation processes, water vapour input and movement, conditions for surface and interstitial condensation in walls and roofs. 2) Treats condensation avoidance in general, humidity control, controlling vapour flow, adding insulation, heating, mould. Illustrates numerous examples diagrammatically from various building types.
Development of infiltration and interroom airflow calculation methods, driven by a concern for indoor air quality have led to a computer simulation of interroom contaminant movement. The model, which assumes fully mixed room air, shows that open doorways provide rapid mixing between rooms in buildings using forced air heating. It also confirms that it is most energy efficient to remove the contaminant nearest its source. Detailed modeling of the variations in contaminant concentration within a room is not presently feasible for long term energy analysis simulations.
A computational procedure to predict expected rates of natural ventilation for buildings at the design stage is investigated. This procedure integrates three computational methods, namely one to predict temperature induced pressures, another to compute wind generated pressure distributions around buildings, and the third to analyse the networks of resulting air flows in buildings. Experiments show that these methods are valid. The three methods can be used not only for the prediction of natural ventilation, but also for many other environmental engineering applications, e.g.
The objective of this paper is to highlight the range of air infiltration and ventilation models that are available to the designer and to indicate the appropriate level of associated computer hardware that is necessary to support these modelling methods. The description begins with a discussion on simple empirical methods intended for basic design calculations. The applicability of these methods is discussed and some of their shortcomings are highlighted.