Models for residential indoor pollution loads due to material emissions under dynamic temperature and humidity conditions

The IEA EBC Annex 68 project on “Indoor Air Quality Design and Control in Low Energy Residential Buildings” has been recently completed. The project considered indoor air pollution loads in dwellings, particularly how such pollutants are emitted in dependency of the hygrothermal conditions: temperature, moisture and air flows. Thus, a proper understanding of the mutual interactions between hygrothermal conditions and pollutants was needed to obtain optimal paradigms for demand-controlled ventilation.

Key findings of IEA EBC Annex 68 - Indoor Air Quality Design and Control in Low Energy Residential Buildings

The overall objective of the “Annex 68” Project, which belongs to the International Energy Agency’s “Energy in Buildings and Communities” Implementing Agreement, has been to develop the fundamental basis for optimal design and control strategies for good Indoor Air Quality (IAQ) in highly energy efficient residential buildings, and to disseminate this information in a practically applicable guide. The strategies shall facilitate the possibility to design and operate residential buildings with minimal energy use, while ensuring impeccable indoor climates.

An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

In order to achieve nearly net zero energy use, both new and energy refurbished existing buildings will in the future need to be still more efficient and optimized. Since such buildings can be expected to be already well insulated, airtight, and have heat recovery systems installed, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ).

IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

Both new and renovated existing buildings will in the future need to be optimized in such a way that can achieve to have nearly no energy use while still providing impeccable indoor climates. Since such buildings can already be assumed to be very well insulated, airtight, and to be equipped with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled.

Metal Oxide Semiconductor sensors to measure Volatile Organic Compounds for ventilation control

The application of Metal Oxide Semiconductor (MOS) sensors measuring Volatile Organic Compounds (VOC) gains increasing attention in the ventilation community because of their low price and claimed ability to supplement or even substitute CO2 sensors for demand controlled ventilation (DCV). Even though there are many “Indoor Environmental Quality” meters available on the market, in which these sensors are used, the amount of scientific studies focused on their reliability and applicability is still limited.

On controlling indoor thermal and moisture content for an occupied building.

The focus of this paper is on controlling ventilation rate to provide acceptable temperature and relative humidity in the space being ventilated. To this end, a system of heat and moisture balance equations for building indoor and components is described. The system is solved numerically. Based on a series of indoor temperature and moisture measurements for our experimental house and well-mixed air distribution in room, moisture generation rate is estimated. The model is validated by simulating the experimental house. Good agreement between the simulated and measured results is obtained.