Energy comfort 2000 - the application of low energy technologies to seven new non-domestic buildings.

This paper describes the results coming out of the European Commission supported THERMIE Target Project Energy Comfort 2000. This was the first Target project, containing eight non-domestic buildings, started in July 1993 and to be completed at the end of 1998. The project aimed to design and construct buildings which use less than 50% of the energy of a traditional equivalent, by using passive methods, particularly to avoid the need for air-conditioning. High quality internal conditions were to be achieved.

A passive solar energy building for the University of La Pampa in Argentina.

During 1997, an energy efficient building was designed, featuring energy conservation, passive solar heating, natural cooling and daylighting strategies. It is located in the province of La Pampa, in the temperate semi-arid region of central Argentina. The resulting compact design houses takes 634m2 of useful floor area with main spaces. An audience class, two laboratories, four research offices, one simple class and services make up the building. Solar windows are provided for all main spaces, except in the audience class. Clestories contribute to add solar gains and natural lighting.

Night ventilation effectiveness in various types of office buildings.

The present paper investigates the potential of night ventilation techniques when applied to full scale office buildings, under different structure, design, ventilation, and climatic characteristics. The approach of this study includes the use of both experimental data and theoretical tools in order to determine the impact and the limitations of night ventilation regarding the thermal behavior of various types of office buildings.

Natural ventilation in office type buildings: results from design case studies.

Natural ventilation can be a part of a strategy for a good indoor air quality. It can also be a way to realise night time ventilation during warm periods. In this latter case, the aim is to cool down the thermal mass of the building to obtain a better thermal comfort during daytime. Night time ventilation requires high ventilation rates and sufficient accessible thermal mass. The ventilation openings have to be well designed to avoid undesirable effects like rain, pollution and burglary.

Incorporation of thermal inertia in the aim of installing a natural nighttime ventilation system in buildings.

The objective of this study is to propose a simplified characterization of thermal inertia, as part of the installation of a system of summer refreshment by means of nighttime cooling ventilation. On the basis of a previous study, conducted by relying upon a modal analysis, the interactions between the thermal inertia of a building and the variation of the air exchange rate have been explained.

Bioclimatic desert house. A critical view.

The paper presents a bioclimatic house in the Negev Desert, lsrael, as a case study through which it attempts to present a comprehensive and critical view of bioclimatic architecture, design support tools, and appropriate details vis-a-vis common construction technologies and practices, assessing their relative impact and limitations. A number of topics are examined from different aspects, such as insulation and thermal mass, window systems incorporating double glazing, insulated shutters and window screens, vis-a-vis solar gains.lr ventilation and infiltration.

Pages