Development of a zonal model to assess indoor climate and damage risks to art works in church buildings

Most of the degradation of works of art in historic buildings is caused by unfavourable indoor climate conditions. The most important works of art receive invasive conservation treatment, called direct action, but this treatment is very expensive. To avoid invasive conservation treatments and ensure that works of art are protected for now and for the future, indirect action to mitigate the deterioration process is necessary. This holds that exposure to unfavourable indoor climate conditions should be avoided, as far as is compatible with its social use.

Airflow and temperature field calculations for winter sports facilities

In the design of indoor winter sports facilities Computational Fluid Dynamics (CFD) simulations are used to calculate the velocity and temperature distribution throughout the space, in order to complement traditional mechanical design and increase confidence into the proposed design. This process is described here using the example of a competitive curling rink. In the introduction the capabilities and limitations of CFD simulations are briefly lined out. The physics of the model of the curling venue are described.

Modelling and monitoring summer performance of Beaufort court

This paper reports a study of a unique system that integrates many renewable energy resources to achieve zero CO2 emission for building services for the head office of a company specialised in renewable energies. A dynamic thermal model was developed to simulate the summer cooling using both design criteria and recorded data. The monitored data acquired by the Building Management System (BMS) were also analysed with the predicted results to assess thermal performance of the system.

The effect of location of a convective heat source on displacement ventilation: CFD study.

Two-dimensional computational simulations are performed to examine the effect of vertical location of a convective heat source on thermal displacement ventilation systems. In this study, a heat source is modeled with seven different heights from the floor (0.5m, 0.75m, 1.0m, 1.25m, 1.5m, 1.75m, 2.0m) in a displacement ventilation environment. The flow and temperature fields in thermal displacement ventilation systems vary depending on the location of the heat source. As a heat source rises, the convective heat gain from the heat source to an occupied zone becomes less significant.

Selective ventilation in large enclosures.

A new method for providing ventilation in large enclosures, which utilizes the principle of 'selective withdrawal' of contaminants while ensuring energy-efficiency and allowing a better use of space, is presented in this study. The concept is based on dividing the enclosed space ventilation-wise into separate zones using a combination of horizontal partitions by stratification and vertical partitions by temporary walls. This gives a high degree of flexibility in the use of available space.