Dynamic characteristics of air infiltration.

Reports study of air infiltration through experimental windows installed in a normal office building. Air change rate was measured using carbon dioxide as a tracer gas. Pressure drop across window, wind velocity and direction were recorded . Finds that air leakage measured was generally quite different from that which could be calculated. Postulates reason for this is complex process caused by dynamically varying pressure differential across the window, flow occurring through window in both directions simultaneously and to particular experimental configuration used.

Air infiltration and its effect in buildings. Rakennusten ilmavuotojen aiheuttajista ja vaikutuksista.

Points out that difficulty in calculating fortuitous ventilation in buildings caused by infiltration means that energy demand of a building contributed by it is scarcely ever known. Provides equations describing infiltration due to pressure differences, which in turn are caused by wind conditions, inside/ outdoor temperature differences and possible influence of mechanical ventilation systems. Describes computer program developed in Finland to calculate air infiltration. Demonstrates infiltration rates in houses.

Wind and trees: air infiltration effects on energy in housing

Conducts series of tunnel tests to examine ways in which wind influence air infiltration energy losses in housing. Develops qualitative model for air infiltration based upon a linear relationship between air flow and pressure difference across walls and roof surfaces. Tests a variety of wind-house orientations with the model. Assesses and compares sheltering effects provided by solid fences, adjacent houses and tall evergreen trees. NOTES See also later study by Mattingly et al. abstract no.187

Air infiltration in high rise buildings Infiltrace vzduchu ve vyskovych budovach.

Provides results of measurements of air infiltration and natural air movement in 3 high rise buildings (flats, university, offices). Gives measurements of pressure differences at doors and windows and between windward and leeward sides of buildings. Determines air flow through selected rooms by CO2 concentration measurements. States that data have contributed information towards new edition of Czechoslovak standard CSN 06 0210 concerning infiltration heat loss calculation in buildings.

Investigation of the relationship between the natural ventilation of a flat and meteorological conditions.

Investigates energy balance of centrally heated flat at coastal town of Kijkduin, based on daily figures of gas consumption and ventilation losses derived from meteorological conditions. Studies: 1) pressure difference over the building caused by windvelocity, wind direction and outdoor air temperature; 2) natural ventilation caused by pressure differences over fortuitous cracks and intentional opening of windows, grilles and shafts. Studies possibility of ventilation prediction via mathematical model.

Pages