12 October 2021, Webinar – Smart materials for energy efficient IAQ management

In this webinar, we addressed the opportunities to use novel materials (from advanced functional nano-materials to bio-based building materials) as building components to actively/passively manage the IAQ, for example, through active paint, wallboards, and textiles coated with advanced sorbents or catalysts and quantify their potential, based on the assessment framework developed in the IEA EBC Annex 86 “Energy Efficient Indoor Air Quality Management in Residential Buildings”.

English

TN 68: Residential Ventilation and Health

Exposures in homes constitute the major part of exposures to airborne pollutants experienced through the human lifetime. They can constitute from 60 to 95% of our total lifetime exposures, of which 30% occurs when we sleep.

Towards the definition of an indoor air quality index for residential buildings based on long- and short-term exposure limit values

In the Framework of the IEA EBC Annex68 Subtask 1 working subject, we aimed at defining an indoor air quality index for residential buildings based on long- and short-term exposure limit values. This paper compares 8 indoor air quality indices (IEI, LHVP, CLIM2000, BILGA, GAPI, IEI Taiwan, QUAD-BBC and DALY) by using the French IAQ Observatory database that includes pollutant concentration measurements performed in 567 dwellings between 2003 and 2005. This comparison allows to make a relevant analysis of each index and determines their pros and cons i.e.

Ventilation in low energy residences – a survey on code requirements, implementation barriers and operational challenges from seven European countries

This paper reports the results of an interview survey conducted among different stakeholders involved in design, installation and operation of residential ventilation in seven European countries. In total 44 interviews were performed. The results provide a valuable snapshot of current practices and insights into potential barriers and challenges regarding installation of mechanical ventilation in low-energy residences to maintain high indoor air quality (IAQ). The results show that mechanical ventilation with heat recovery is becoming a common choice in new low energy residences in Europe.

Design and operational strategies for good Indoor Air Quality in low-energy dwellings: performance evaluation of two apartment blocks in East London, UK

To achieve stringent energy objectives, new dwellings are subject to energy conservation measures including low air permeability and high levels of insulation. Mechanical Ventilation with Heat Recovery (MVHR) can be used to control the balance between energy efficiency and Indoor Air Quality (IAQ) in these buildings. This paper evaluates the effectiveness of the design and operational strategies adopted in a new development comprising two apartment blocks in East London.

An International Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

In order to achieve nearly net zero energy use, both new and energy refurbished existing buildings will in the future need to be still more efficient and optimized. Since such buildings can be expected to be already well insulated, airtight, and have heat recovery systems installed, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or making it in a new way demand controlled. However, this must be done such that it does not have adverse effects on indoor air quality (IAQ).

IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

Both new and renovated existing buildings will in the future need to be optimized in such a way that can achieve to have nearly no energy use while still providing impeccable indoor climates. Since such buildings can already be assumed to be very well insulated, airtight, and to be equipped with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled.

New release! AIVC Ventilation Information Paper #44: Residential cooker hoods

We are happy to announce the release of AIVC's Ventilation Information Paper no 44: Residential cooker hoods. This paper summarizes current knowledge on cooking contaminant emissions, its effects on IAQ, and identifies standards for assessing the efficacy of cooker hood (also known as a range hood) performance.

English

VIP 44: Residential Cooker Hoods

AIVC's Ventilation Information Paper #44: Residential Cooker Hoods,  summarizes current knowledge on cooking contaminant emissions, its effects on IAQ, and identifies standards for assessing the efficacy of cooker hood (also known as a range hood) performance.

12 October 2021 – Upcoming Webinar "Smart materials for energy efficient IAQ management"

The Air Infiltration and Ventilation Centre and the IEA EBC Annex 86 “Energy Efficient Indoor Air Quality Management in Residential Buildings” (https://annex86.iea-ebc.org/) are organizing the webinar "Smart materials for energy efficient IAQ management" to be held on October 12th, 2021 at 14:00-15:45 CET.

English

Pages