Introduction: Why performance-based assessment methods? Overview of the needs and the possibilities

In future building regulations 2020, building performance is going to be extended to global performance, including indoor air quality (IAQ). In the energy performance (EP) field, successive regulations pushed for a "performance-based" approach, based on an energy consumption requirement at the design stage. Nevertheless, ventilation regulations throughout the world are still mostly based on prescriptive approaches, setting airflows requirements. A performance-based approach for ventilation would insure that ventilation is designed to avoid risks for occupant’s health. 

Performance-based assessment methods for ventilation systems: Overview of on-going work in France and in Europe

In the field of energy performance, successive regulations pushed a "performance-based" approach, based at least on an energy consumption requirement at the design stage for heating and/or cooling systems (Spekkink 2005). Nevertheless, in the field of building ventilation, regulations throughout the world are mainly still based on “prescriptive” approaches, using airflows or air change rates requirements.  

Sketch systemic optimal design integrating management strategy, thermal insulation, production and storage energy systems (thermal and electrical): application to an energypositive train station

The aim of this paper is to develop a new concept of sketch tools for the very steps of the design process. The originality lies in the use of optimization to define a global design of the building, the energy system and the control strategy. Therefore, an adapted model of the building has been realized, not directly using fine dynamic models (like those that can be found in tools TRNSYS, DOE2.2 and EnergyPlus...), but more coarse equations adapted to the sketch design phase. Those models are based on static and macroscopic equations investigating energetic and financial balances.

Comparison of three IAQ calculation methods

Calculating contaminant concentrations in or the required ventilation for a space has been a difficult and confusing part in the application of the IAQ Procedure of ANSI/ASHRAE Standard 62.1-2004; Ventilation for Acceptable Indoor Air Quality. Appendix D of ASRAE Standard 62 presents one method for performing these calculations, but it is limited to the steady-state analysis of a single zone. More recently, two software tools have been developed by the United States National Institute of Standards and Technology (NIST) to facilitate these calculations and to include transient effects.

Air flow model for sub-slab depressurization systems design

Soil gas pollutants (Radon, VOCs, etc...) entering buildings are known to pose serious health risks to building’s occupants, and various systems have been developed to lower this risk. Soil Depressurization Systems (SDS) are among the most efficient mitigation systems protecting buildings against soil pollutants. Two kinds of SDS are currently used: active and passive systems. Active systems are mainly use fans, which enables the mechanical sub-slab’s air extraction. Passive systems use natural thermal forces and wind effect to extract air from the sub-slab.

Design Considerations for Roof-Mounted Ventilation Systems

A methodology is presented for determining the air flow rate through a stack-ventilated single-spacedenclosure bearing a roof-mounted ventilation tower. We develop a "system discharge coefficient" which takes into account the pressure losses that occur at the intake opening of the enclosure, inside the tower and at the outlet opening. The system discharge coefficient is interpreted as a reduction in the area of the path that the air flow takes. Based on this reduced area the air flow rate is then determined.

Energy Requirements for the Treatment of Fresh Air in HVAC Systems: A Case Study for Athens and Thessaloniki, Greece.

The aim of this paper is to discuss the impact of the relation between varying indoor and outdoor conditions on the ventilation loads of buildings and to provide HVAC designers with the respective information needed for the optimum dimensioning of the system. The total load generated by one litre per second of fresh air brought from the outside environment to the indoor space conditions, called -ventilation load index-, is calculated for the cities of Athens and Thessaloniki, Greece. The same principles can be applied to other locations.

Roof-Mounted Ventilation Towers – Design Criteria for Enhanced Buoyancy-Driven Ventilation

Ventilation towers are often incorporated into the design of naturally-ventilated buildings. These towers increase the physical height of the building and thereby potentially enhance the buoyancy-induced air velocity. However, acoustic baffles, insect meshes, etc., placed within the towers result in pressure losses that effectively reduce the area of the flow path, thereby restricting the rate of airflow.

Best Practice Guidelines for Double Skin Facades

Many modern office buildings have highly glazed facades. Their energy efficiency and indoor climateis, however, being questioned. Therefore more and more of these buildings are being built with doubleskin facades, which can provide: a thermal buffer zone, energy savings, wind protection with openwindows, fire protection, aesthetics, solar preheating of ventilation air, sound protection, pollutantprotection with open windows, nocturnal cooling and a site for incorporation of PV cells.

Direct Ground Cooling: Influence of Ground Properties on the Ground Heat Exchanger Size

In this paper the thermal behaviour of a direct ground cooling system located in Milano, Italy, isstudied by means of dynamic simulations performed in the TRNSYS environment. The simulationmodel consists of a reference building equipped with radiant panels connected to a vertical groundheat exchanger. Room thermostats and chilled surface condensation sensors provide system control.The ground heat exchanger size is adjusted in order to provide summer comfort conditions in thebuilding as well as sustainable operation over a long period.