On the contribution of steady wind to uncertainties in building pressurisation tests

This paper analyses the contribution of a steady wind to the uncertainties in building pressurisation tests, using the approach developed in another paper (Carrié and Leprince, 2016). The uncertainty due to wind is compared to the uncertainties due to other sources of uncertainty (bias, precision and deviation of flow exponent).
The main results of this study are:

Impact of airtightness on the heat demand of passive houses in central European climate

Excessive air leakage through the building envelope increases the infiltration heat loss and therefore lowers the energy efficiency. Therefore, very good airtightness is required in case of well insulated buildings equipped with a mechanical ventilation system with heat recovery (e.g. n50 < 0.6 h-1 for passive houses). Although the building industry has progressively adopted strategies to comply with such strict limits, it is still important to study how and how much the airtightness influences the energy efficiency of different types of buildings in different climatic conditions.

The effect of refurbishment and trickle vents on airtightness: the case of a 1930s semi-detached house

As UK homes are insulated and draught proofed in an attempt to reduce wintertime heating demand they become more airtight. Any reduction in infiltration could have a detrimental effect on indoor air quality. Controllable background ventilation provided by trickle vents is one method of maintaining indoor air quality.