AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

Denmark

Ventilative Cooling. State-of-The-Art Review

This report summarizes the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. The report is an official Annex report that describes the state-of-the-art ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools.

Status and recommendations for better implementation of ventilative cooling in standards, legislation and compliance tools

This summary report presents insights on recommendations into how ventilative cooling is integrated in EN standards, ISO standards, national standards, national legislation and national compliance tools. The information presented derives from feedback by IEA EBC Annex 62 experts of 11 countries (see Table 1) who have completed a questionnaire. This gives a high level of insight into the current status, and thereby the recommendations to be given on the basis of this knowledge.

Ventilative cooling source book

Overheating in buildings is an emerging challenge at the design stage and during operation. This is due to a number of reasons including high performance standards to reduce heating demand by high insulation levels and restriction of infiltration in heating dominated climatic regions; the occurrence of higher external temperatures during the cooling season due to changing climate and urban climate not usually considered at the design stage; and changes in internal heat gains during operation are not factored in the design.

Ventilative cooling case studies

Examples of well documented case studies that use ventilative cooling (VC) to reduce the energy demand for cooling or overheating risk in new and refurbished buildings are valuable to the energy in buildings community. This report and associated brochures contains such examples and provides details on the design, control, operation and performance of the VC systems. The report aggregates and summarises all 15 case study buildings collected in subtask C of IEAEBC Annex 62. 

Ventilative cooling design guide

This design guide is based on the work of IEA-EBC Annex 62 “Ventilative Cooling” and the research findings of the participating countries.

This guide is designed for both architects and engineers to support the design of ventilative cooling systems especially in the early design stages.

Experimental investigation of frost formation on air to air counter flow heat exchanger in air handling unit and climatic influence on dry, wet, frost operation condition

The work presented in this paper investigates frosting problem on high efficient air to air counter flow heat exchanger. The presented investigation consists of two main activities.  

An argument for a reality check in the ventilation industry: We still have an energy crisis, in practice, and are not generally, in practice, achieving better indoor climate

In 2017 the Danish Building and Property Agency started a project titled “Avoiding energy waste in ventilation systems” by tracking the actual energy use in a sample of their 4 million m2 portfolio of buildings through on-line energy management tools. The project is not complete, but the key preliminary findings  described in this paper are: 

Measurements of sleep quality with low-cost sleep monitors: Effect of bedroom air quality and sleep quality

More than 20 years of one’s life is spent in the bedroom when sleeping. Sleep quality is essential for our health, well-being and next-day performance. However, there is very little information on how bedroom air quality affects the quality of sleep. One of the reason could be that the accurate measurements of the quality of sleep have been the domain of sleep research groups and sleep laboratories using polysomnography. In the recent years, however, many low-cost sleep monitors and actigraphs made their way into the market.

Methods to evaluate gas phase air-cleaning technologies

Gas-phase air cleaning methodologies have been considered as an attractive and cost-benefit alternative, and supplement to the traditional ventilation systems securing that air quality in buildings is meeting the prescribed standards. The systems can use the air that has been already conditioned to the required temperature and relative humidity, and by removing airborne gaseous pollutants, this air can be supplied indoors again.

Better implementation of ventilative cooling (cooling of buildings using outside air as main source) in national building standards, legislation and compliance tools

Low energy buildings are highly insulated and airtight and therefore subject to overheating risks, where Ventilative cooling (VC) might be a relevant solution. VC is an application (distribution in time and space) of air flow rates to reduce cooling loads in spaces using outside air driven by natural, mechanical or hybrid ventilation strategies. Ventilative cooling reduces overheating in both existing and new buildings - being both a sustainable and energy efficient solution to improve indoor thermal comfort (State-of-the-art-review, Kolokotroni et al., 2015).

Pages