Within the framework of the Dutch participation in IEA Annex XIV "Condensation" field experiments have been carried out to study airborne moisture transport in realistic circumstances. The experiments were done in an unoccupied 3-storey dwelling in Leidschendam in the Netherlands. The paper discusses some of the results.
"Air Movement and Ventilation Control within Buildings", held 24-27 September 1991, Ottawa, Canada, proceedings published September 1991, Volume 1, pp 141-142. #DATE 00:09:1991 in English",An overall presentation will be given of the final report from Annex 18 experts are proposing DCV-systems in various building types. The presentation will be focused on strategies and pre-requisites and on DCV-systems in the building types not presented separately.
Airflow through a building has both mean and fluctuating components due to spatial and temporal variations in wind-induced pressures. Most of the existing investigations consider the average values of wind pressures and predict steadystate solutions for airflow [1]. This paper presents some experimental results for the validation of a proposed fluctuating airflow model [2]. The new model employs spectral analysis and statistical linearization methods to model the pulsating airflow through buildings.
The International Energy Agency (IEA) task-sharing project "Air Flow Patterns within Buildings" was initiated in May 1988 for a duration of 3,5 years. Twelve nations contribute work and expertise and "share the task" specified in the project's objectives. This project and the AIVC belong to the same Implementing Agreement: The Energy Conservation in Buildings and Community Systems Program. As "Attachments" to the Implementing Agreement, they are called Annexes.
We report on four new full scale experiments that were designed to measure the influence of wind on the ventilation and/or heat loss rates through single large openings: a) test-house with horizontal slit opening, set-up to measure internal pressures and the effect of air-compressibility (CSTB, France), b) attic with window ajar, set-up to measure long term ventilation rates with varying wind and temperatures (BBRI, Belgium), c) fully open window, set-up to measure ventilation rate and cooling as a function of time (BRE, UK) d) fully open window, set-up tomeasure cooling as a function of ti