Describes a computer program developed for the analysis of residential building thermal loads and space heating and cooling energy use. It is capable of modelling the simultaneous heat balances on multiple spaces, building air flows by infiltration and natural and forced ventilation, including thermostatically controlled through the house ventilation, detailed solar gain, part load performance of central and unitary heating and cooling systems, and thermostat droop and cycling characteristics.
Compares wind pressures measured on a 1:25 scale model of a mobile home with results from a full-scale investigation. The modelling technique used exaggerates the surface roughness in order to match the full-scale turbulence intensity at the model height. Shows that there is reasonable agreement of themean and RMS pressure coefficients between model and full scale, when the pressure coefficients are normalized by the local dynamic head at the building height.
Defines requirements for suitable indoor air quality and examines the technical and economical possibilities of suitable methods of ventilation. Differentiates between densely populated places (meeting places) and others of low occupancy, such as offices and living rooms. Finds that the most efficient way of satisfying hygiene requirements is by controlled air renewal, and that to achieve this mechanical ventilation according to DIN 1946 should be installed.
Subjects 11 private dwellings at Taby and 5 at Brunna (all 2-3 yrs old) to repeated airtightness tests over a period of two years. Finds the largest leakage is 2.5 ach and the mean leakage is 1.6 ach. Immediately after its completion, the air tightness of a building undergoes a certain deterioration, after which it stabilizes. Over the 2yr. measuring period the changes are small, and could all be attributed to occupancy effects. Leakage paths occurat the junctions of wall and ceiling and wall and floor, and at service entries.
Tests a method which determines the infiltration of air and radon from the soil to a building. Makes measurements of total air flow along with usual airtightness tests. Describes practical tests in a detached house with a raft foundation on a gravel esker, and determines the permeability curves for thewhole house and the raft alone, and also the permeability of the soil to air. Describes the way the results are used for determination of air infiltration in different climatic conditions, and tests different radon reducing methodsusing the previously developed system analysis.
Describes a field study carried out to evaluate the effectiveness of the air leakage sealing techniques employed by Ener-Corp Management Ltd. for reducing air infiltration in houses. Performs presealing and postsealing air leakage tests on 82 single detached houses, located in Winnipeg or southern Manitoba. The sample group consisted of 56 conventionally-constructed houses of varying size, style, occupancy and airtightness, and 26 nonstandard structures of smaller but identical size and age. This latter group was part of the Flora Place Project.
Notes the large savings possible if ventilation were adapted to the prevailing need. A promising possibility for indicating occupancy and thus the ventilation requirement is measuring the level of carbon dioxide. The project includes a test with equipment for CO2-monitoring of the exhaust air flow in an office building which controls the volume of outdoor air supply, thusmaintaining the CO2 level constant. Measures how the CO2 level can vary locally,how other pollutants in air can vary, how much energy can be saved.
Measures air change rates in a 2-storey detached house with operation of various types of mechanical fresh air ventilation systems. Studies 4 systems, including 2 balanced systems and 2 exhaust-only systems. The forced ventilation rate is controlled at 0.15, 0.25, 0.4, or 0.5 ach. Develops expressions for the test house relating the house air change rate under winter conditions to the forced ventilation rate and the infiltration rate due to wind and temperature difference.
Presents various measurement and inspection techniques for assessing the thermal performance of the exterior envelopes of buildings. Inspection techniques include the use of ground-based infra-red thermographic surveys, aerial infra-red surveys, tracer gas air infiltration measurements, pressurization tests for measuring the tightness of the building envelope, and spot radiometer surveys for detecting gross defects. Also considers heat flow meters, a portable calorimeter and a microprocessor-driven envelope testing unit. Provides recommended procedures for each technique.
Discusses the Hjortekar project of 6 low energy houses, built as part of the Danish Energy Research and Development Programme. Explains some of the construction details to avoid cold bridges and ensure airtightness. Test results of infiltration air change rates range from 0.02 to 0.12 ach, while other tests show less than 15% difference between calculated and measured transmission heat losses, which range from 70-155 w/degree C.