Describes the results of air tightness tests of various service penetrations through a polythene vapour barrier and associated insulation. The service penetrations studied were insulated and uninsulated ventilation ducts, plastics, pipes, electrical boxes and electrical conduits. Various methods of sealing the penetration were tested for each case. Recommendations are made for choice of sealing method based on performance and case of installation. Examples are given of the effect of leakage through service penetrations on total building leakage.
Parts 2 and 3 of a series of articles. Describes office buildings with natural and mechanical ventilation systems mentioned in part one, where the mechanical ventilation plus humidification and cooling is used only during the coldest parts of the winter and hottest parts of the summer. Provides comparative cost analysis for the building. Discusses design criteria to take account of fullor part time natural ventilation. Treats maximum room depths, window types,external and internal doors, furniture, room layouts.
Describes a simple device developed in the Institute for Applied Physics which is suitable for frrsh air control in air conditioned spaces. The protype instrument detects the amount of CO2 in the atmosphere on the basis of photoacoustics. Illustrates the device schematically and explains its operation.
The report aims to provide the basis for the design and set up of experiments for the evaluation of the effects of energy conservation measures in residential buildings. The first part deals with general planning of the experiment, basic principles of building physics, thermal comfort and energy related behaviour of occupants. The second part decribes the design of the experiment, and the third part is devoted to measurement techniques, data acquisition and installation rules in the different fields of building physics and heating systems.
Uses model buildings to study external distribution of wind pressure and internal air flow. Compares air flow data with computed values derived from the pressure distribution data. Collects the pressure data obtained in a comprehensive study of wind loads on low-rise buildings and rearranges it in a form more suited to the computation of internal flows. Presents and discusses the methods emloyed in the reformulation and the results obtained. Briefly describes the development of design aids from which flow estimates could be made by simple hand calculations.
Describes energy measurements carried out on 6 detached single family low-energy houses in Hjortekaer, 1979-1980. Discusses a few typical construction details, to illustrate solutions to the problem of cold bridges and to demonstrate ways of obtaining air tight constructions. Measures the achby the tracer gas decay method, showing results ranging from 0.02-0.12 ach. Correlates these with pressurization tests also made. By means of regression analysis of thermal calibration data tests 3 different models for heat loss equations.
The estimation of the average wind pressures on buildings can be made via wind tunnel measurements. Carries out measurements on 5 models of buildings under various conditions. With the aid of these results and some interpolation, makes a prediction of the average wind pressure for a large number of buildings. Includes studies of the effects on the pressure caused by another building upwind.
Presents the results of an experiment designed to measure the additional energy savings achieved by adding two person days of house doctoring to a standard energy audit. Compares a house doctor and audit treatment to an audit alone and to a passive control group. Treatments were applied to randomly selected groups of 10 houses each in Walnut Creek California. The difference in energy savings between the treatments, based on monthly utility bills, were not statistically significant due to wide variation in savings and the loss of several houses from each group.
Reports conclusions from projects investigating the tightness of buildings sponsored by the Ministry of Trade and Industry. Describes factors influencing ventilation such as size and shape of building, location, distribution of leakage points, interior air flow paths and the design and control of ventilation. Wind condition and temperature difference are the only driving forces in natural ventilation, in mechanical ventilation the temperature has only a limited influence but the wind may cause considerable draught in an untight building.