This paper describes the results of a computational fluid dynamics study to assess the air freshness and percentage of dissatisfied people due to air quality in a partitioned office with different supply air diffusers. The numerical model involves the finite-volume approach of solving governing equations for mass and momentum, assuming that the buoyancy effects are negligibly small in comparison to the inertial effects. The k-s two-equation model of turbulence is used to predict the turbulence transport of flow properties.
Poor air quality in office buildings can result in loss of productivity, absenteeism and, in some cases, medical problems. The purpose of this Update is to provide guidelines for property managers and engineers for controlling indoor air quality using building ventilation systems.
The energy statistics of OECD Countries shows that between 30-50% of primary energy is consumed in non-industrial buildings (i.e. in dwellings, offices, hospitals, schools etc.) Of this, as much as 50% is dissipated from the building in the departing air stream. As buildings become more thermally efficient, the proportion of energy loss (either heating or cooling losses) associated with ventilation and air infiltration is expected to become the dominant thermal loss mechanism. Additional losses may be associated with the energy needed to operate mechanical ventilation systems.