Critical analysis of contaminant removal efficiency assessment in a ventilated room

This study presents a critical analysis of assessment of ventilation systems effectiveness in terms of contaminant removal. For this purpose, experimental measurements are carried in a room of an experimental house called MARIA. Various ventilation scenarios are handled. The ventilated room is also equipped with a pine wood floor which emits several Volatile Organic Compounds which are considered as air pollutants here. Thereafter, based on boundary conditions given by measurements, Computational Fluid Dynamics (CFD) simulations are performed.

Experimental Study of Draft Perception of Tropically Acclimatized Subjects under Personalized Ventilation

A 2x3 series of experimental conditions under ambient room temperature of 26 °C, two Personalised ventilation (PV) supply air temperatures of 20, 23 °C, and three levels of PV air flow rates of 4.5, 7.3, 11.2 L/s/person were conducted using tropically acc

Study on the Individual Control System Considering Human Thermal Adaptation

This paper analyses an individual control system that accounts for human thermal adaptation.Although the conventional individual control system has been shown to provide a satisfactory level of thermal comfort, there are questions over its energy efficiency. It has therefore become urgent to develop a new individual control system that can ensure both energy saving and thermal comfort. In this study, the alleviation time is proposed as an energy-saving control strategy for the individual control system.

Demand Control Ventilation, Indoor Air Quality and Energy Conservation Issues in the Tropics

In the light of ever increasing oil prices and rapidly depleting fossil fuel resources, energyconservation strategies in buildings become popular and necessary design goals. However, it is important to note that resulting poor ventilation in the occupied zones at part-load operating conditions or even unanticipated peak-load conditions due to a different occupancy pattern can often lead to major problems associated with poor Indoor Air Quality (IAQ).

Analysis of a Local Heating System for Thermal Comfort: the Numerical Approach

Achievement of thermal comfort can be improved if individual control of the environment is allowed,namely through a local heating system (LHS), consisting of individually controlled radiant heating panels, adapted to a common office desk to a seated person. The coupling with of a new radiative module enhances the simulating capabilities of an existing CFD numerical model. The added improvements are applied to the evaluation of the thermal performance o the LHS. A comparative analysis clearly demonstrates the relevance of a due consideration of radiative exchanges.

Chair-mounted Isothermal Airflow Generator

This paper reports the function and the performance of chair mounted isothermal airflowgenerator system. There were four air outlets on the movable armrests and the air velocity at the body surface of an occupant was adjustable with fan speed controller. The air intakes were installed on the seat and the backrest of the chair. The experiment was carried out with 16 adult persons as the subject and the TSV and CSV were investigated under three different ambient conditions (26, 28, and 30C, 50%RH).

Ventilation Efficiency of Personalized Ventilation: CFD Study

In this paper micro-environment around human body with a personalized ventilation system ina displacement ventilated room was simulated by the standard k-e model. The geometry of thecomputational thermal manikin (CTM) is a real representation of a human body. Detailed analyses of air flow at the facial region and inhaled air quality improvement with personalized ventilation system were carried out with the aid of this complicated CTM.

Individually controlled office environments. Thermal comfort parameters determination

This paper presents the main results of a research on an individually controlled office environment. The research was carried out in a laboratory that counts on an air conditioning system with underfloor air supply and individual airflow control devices for personalized thermal comfort. The evaluation was based on quantitative and qualitative data acquired respectively by means of comfort variables local measurements and people participation. The main results refer to the thermal comfort parameters proper to the referred environment and parameters for the system operation.

Estimation of Inhaled Air Quality for Personal Air Conditioning by Means of Age and Residual Lifetime of Air Distributions with Newly Developed Calculation Method

A detailed study using Computational Fluid Dynamics (CFD) was conducted on the influenceof the difference in the effective diameters of air supply outlets (wind velocity, assuming the airflow rate to be constant) when using personal air conditioning with isothermal air currents. A method to analyze the new age of air (SVE3*) and the residual lifetime of air (SVE6*) was proposed and studied focusing on the individual supply openings and exhasut openings in a room with multiple supply openings and exhasut openings when using personal air conditioning.

Thermal sensation and comfort with five different air terminal devices for personalized ventilation

Thirty human subjects participated in experiments with five different air terminal devices forpersonalized ventilation operating at two levels of room air temperature within the range prescribed instandards for thermal comfort, namely 23C and 26C. The subjects actively used the possibility to change the airflow rate and to adjust the positioning of the air terminal devices in regard to the airflow direction. The individual control provided allowed subjects to maintain thermal neutrality with the systems studied, except one, named Headset at the higher room temperature of 26C.

Pages