Estimating the impacts of climate change and urbanization on building performance

While the scientific literature is full of studies looking at the impact of climate change driven by human activity, there is very little research on the impact of climate change or urban heat island on building operation and performance across the world. For this study, typical and extreme meteorological weather data were created for 25 locations (20 climate regions) to represent a range of predicted climate change and heat island scenarios for building simulation. Then a set of prototypical buildings were created to represent typical, good, and low-energy practices around the world.

The daylight coefficient method and complex fenestration

The daylight coefficient method has been introduced in computer simulation as an efficient approach to compute indoor daylight illuminances through building static fenestration systems. A set of coefficients are calculated only once prior to simulation start for a given number of elemental patches making up to sky vault and ground.

Creating weather files for climate change and urbanization impacts analysis

Over the past 15 years, much scientific work has been published on the potential human impacts on climates. For the Third Assessment Report published by the United Nations International Program on Climate Change in 2001, a series of economic development scenarios were created and four major general circulation models (GCM) were used to estimate the anthropogenesis-forced climate change. These GCMs produce worldwide grids of predicted monthly temperature, cloud, and precipitation deviations from the period of 1961-1990.

Using energy simulation to operative temperature evaluation

According to the Czech legislative act the operative temperature is the evaluation criterion for thermal comfort in air-conditioned or heated spaces. The operative temperature respects the air temperature; mean radiant temperature and air velocity. For mean radiant temperature calculation the surface temperature of the surrounding walls must be known. Manual calculation of the mean radiant temperature is very complicated and not suitable for practical usage since the surface temperatures are difficult to determine.

Plant optimization program (pop) and its application in rate model for a large district energy and combined heat and power system

District energy systems provide commercial and residential space heating, air conditioning, domestic hot water, steam, and industrial process energy, as well as sometimes co-generating electricity in systems. Though the district energy system is usually more economical and energy-efficient than individual heating and cooling systems, it is also much more complicated system.

Computational approach for determining the directionality of light: directional-to-diffuse ratio

The directionality of light is defined as the balance between the diffuse and directional components of light within an environment. It is an indicator about the spatial distribution of light flow onto an element or into a space. This paper presents a new luminance based metric that quantifies the directionality of light. The diffuse and directional components of the luminous environment are isolated as a unique feature of simulation-based approach. The rationale and methodology of the directional-to-diffuse ratio is discussed through visual demonstrations and quantified metrics.

Airflow network modeling in EnergyPlus

The airflow network model in EnergyPlus provides the ability to simulate multizone wind-driven airflows. The model is also able to simulate the impacts of forced air distribution systems, including supply and return air leaks. The air distribution system portion of the model is currently applicable for constant-air-volume systems.

Airflow and temperature field calculations for winter sports facilities

In the design of indoor winter sports facilities Computational Fluid Dynamics (CFD) simulations are used to calculate the velocity and temperature distribution throughout the space, in order to complement traditional mechanical design and increase confidence into the proposed design. This process is described here using the example of a competitive curling rink. In the introduction the capabilities and limitations of CFD simulations are briefly lined out. The physics of the model of the curling venue are described.

Utilizing high performance supercomputing facilities for interactive thermal comfort assessment

We outline the current state of the development of a computational steering environment (CSE) for the interactive simulation and local assessment of indoor thermal comfort. The system consists of a parallel CFD kernel, a fast 3D mesh generator and a virtual reality-based visualization component. The numerical method is based on a lattice Boltzmann algorithm with extensions for simulations of turbulent convective flows.

Dynamic simulation of blind control strategies for visual comfort and energy balance analysis

The presented study describes a method for evaluating control strategies for shading devices.

Pages