The paper describes work on simplified design methods made in connection with the International Energy Agency programme "Air Flow Pattern within Buildings", Annex 20, subtask 1. It is shown that simplified models are able to indicate design values as the maximum velocity in the occupied zone and penetration depth of a non-isothennal jet in a room. The design according to throw of an isothermal jet is a fully developed method which has a sufficient level of accuracy when it is used in regular rooms.
The ability to accurately predict air movement and temperature distribution in spaces offers the potential for design engineers to evaluate and optimise room air distribution systems at an early stage, leading to improved thermal comfort and ventilation effectiveness. The computer models which are used for detailed analyses are based on computational fluid dynamics [1,2] and employ sophisticated numerical algorithms to satisfy the basic laws of physics. The programs are such that they are more complex and more difficult to use than those with which design engineers may be more familiar.
The International Energy Agency (IEA) task-sharing project "Air Flow Patterns within Buildings" was initiated in May 1988 for a duration of 3,5 years. Twelve nations contribute work and expertise and "share the task" specified in the project's objectives. This project and the AIVC belong to the same Implementing Agreement: The Energy Conservation in Buildings and Community Systems Program. As "Attachments" to the Implementing Agreement, they are called Annexes.
The use of independent people who visit the buildings is another approach to evaluating indoor air quality. Panels of 50 to 100 subjects have been used to evaluate the air quality in office buildings.
Accurate measurement of the positions of windows, skylights, vents, dampers, etc. has always been a problem for researchers. Often open/closed switches are used which do not indicate the degree of opening which has occurred. The use of Hall-Effect sensors to measure such positions was first proposed for monitoring residential passive air inlets.