Velocity and turbulence intensity profiles of the airflow inside a section of a narrow body (737) aircraft cabin were measured using the particle image velocimetry (PIV) technique.In this paper the measurement technique is described and the results are presented and discussed. The purpose of this study was to provide accurate experimental data for validation of the computational fluid dynamics (CFD) codes developed for this application.
This paper gives an overview of sources of indoor particulate matter (PM) and its effects on occupants. Studies indicate that outdoor PM contributes to indoor PM, yet a large fractionof indoor PM is generated indoors. The ratio of indoor to outdoor PM concentrations (I/O ratio) varies substantially due to different indoor conditions and PM spatial distributions.Real-time investigation using multiple point sampling technique is needed for better understanding of PM spatial distribution.
Past research that has evaluated the association between student performance and some change variable (building renovation, room temperature, curriculum, teacher involvement, etc.) has focused on student-level data and has not adequately accounted for regression artifacts (regression to
Residential distribution systems are inherently inefficient at delivering heated or cooled air to the conditioned space as the result of poor design and installation practices. Examples of some of the more common problems include heat loss/gain in unconditioned spaces and leakage through supply and return ducts. These defects can result in significantly increased energy consumption, poor thermal comfort, and high peak electricity demand. Efforts to improve distribution systems
The interior zone and exterior zone air-handling units (AHU) can be connected through their return air ducts to become a new air-handling unit system, named OAHU system, which allows optimal choice of outside air intake and decouples sensible and latent cooling in a zone with lower sensible
The conventional constant air volume exhaust fan system is actually a variable air volume system. The fan airflow increases as the fume hood airflow decreases. Under partial fume hood exhaust airflow, the fan power is higher than the design fan power. Two energy efficiency measures are developed in this study to reduce the fan power of the conventional constant air volume exhaust system. In the first measure, a modulation damper is added in the main exhaust air duct and
In this paper, a CFD analysis of airflow and contaminant distribution within enclosed vehicular parking facilities is presented. First, the CFD simulation is validated using field data. Then, the results of a parametric CFD analysis are summarized. In particular, it was found that significant fan
energy savings can be obtained when simple on-off controls are properly implemented without affecting the indoor air quality within the garage. Moreover, it was found that the position
Today the use of energy efficient technology and renewable energy sources have not become mainstream in the building industry. One of the main reasons for this is thought to be that each part in the building is considered separately. The approach in the newly started EU-project, IDEEB, is to adopt comprehensive view. This considers the building itself and its installations as one energy system to achieve the required indoor comfort at the same time as reducing environmental impact.
The mixing of different air streams is a process commonly found in air handling systems. One of the most common examples of this process is found in the air handling unit mixing box where outdoor air is mixed with return air. In the adiabatic mixing process, the energy leaving the mixing box equals the energy entering the mixing box. In order to calculate the energy in the mixed air stream, it is only necessary to know the energy in the outdoor and the return air streams. As a result, it is not necessary to consider whether the mixing process is ideal or not.
This paper intends to answer the folllowing question : Why a laboratory on Indoor Air technology ?Some good reasons are that the HVAC sector in Norway is facing an increasingly difficult situation :. need of major renovation for schools and hospitals, . limited resources available for research and development in small and medium-sized enterprises.. Number of students graduating from the university with an HVAC degree has been steadity decreasing..