Dynamic buffer zone - Controlling moisture and heat flow

The building envelope is primarily an environmental separator, which allows indoor spaces to bemaintained at different conditions from the outside environment. Intentional humidification during the heating season is a common practice in cold climates. Moisture escaping from a humidified building due to air leakage through flaws in the air barrier system can negatively affect the durability of the building envelope.

Demand controlled residential hybrid ventilation

A Demand Controlled Hybrid Ventilation System is a two-mode system using natural forces as long as possible and electric fans only if necessary. Sensor technologies are used to establish the exact required airflow for indoor air quality and thermal comfort to a minimal energy demand. A large part of the Dutch dwellings are foreseen with a ventilation system consisting of natural supply with mechanical exhaust. Fan power for these systems typically is 30 - 40 W (Specific Fan Power 0.7 - 1.0 kW/(m3/s)). Small improvements lead to a laboratory reference of 21 W.

Aspects of air and heat distribution in low energy residential buildings

In highly insulated residential buildings, complying with the Passive House Standard, the space heat demand can be covered by air heating at air flow rates given by air quality requirements, without the need for additional air re-circulation or for a water heating system. The air distribution system is kept compact. In a common concept the supply air terminal is located above the door to the corridor. Such configurations were evaluated for typical air transfer devices and extreme supply temperatures.

Heat recovery in building envelopes

Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Some studies have indicated that application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. The major objective of this study was to provide an improved prediction of the energy load due to infiltration by introducing a correction factor that multiplies the expression for the conventional load.

Weather resistive barriers : new methodology for their evaluation

Effective weather resistive barriers (WRB) perform important functions in retarding waterentry into walls and in controlling water vapor movement as well as the amount of energyattributed to air leakage (Burnett, 2000; Weston et al 2001). Recognizing this, a public andprivate sector research consortium was established to develop reliable and precise methodsfor evaluating their performance.This paper, third in a series, provides an overview of the most significant results obtainedduring the consortium work.

Building envelope, duct leakage and HVAC system performance in HUD-code manufactured homes

Between 200,000 to 300,000 manufactured homes are built to the US Department of Housing and Urban Development’s Manufactured Home Construction and Safety Standards (MHCSS) in the US each year. This paper compares building envelope, duct leakage and HVAC s

Sick building syndrome : indoor quality and performance implications

Findings about sick building syndrome in Sydney’s offices are presented. The aim is to ascertain whether perceptions of sick building syndrome in offices impact on discrete aspects of workplace performance and management. One hundred offices in the Sydney

Using forced ventilation to mitigate mold growth in existing multi-family housing

Increasing emphasis on energy-efficiency has many jurisdictions enacting stricter energy codes. Yet, these same green building codes typically do not adequately address ventilation when a building envelope is designed to both minimize infiltration/exfiltration and maximize thermal efficiency. Our company investigated an apartment complex in Southern California, U.S.A. that was designed 25% more thermally efficient than required by State Code. Within months of occupancy, the first complaints of biological growth at windows and closets occurred.

Mold in dwellings : field studies in a moderate climate

Mold in dwellings is a persisting complaint in moderate climates. Nine parameters intervene in it: (1) climate, (2) inside temperature, (3) vapor release, (4) ventilation, (5) lay out, (6) envelope thermal performance, (7) sorption inside, (8) presence of preferential condensation surfaces and (9) type of finish. Exterior climate acts as boundary condition while inside temperature, vapor release and ventilation belong to the living habits. The five others are design and construction related.

Development of indoor climate classes to assess humidity in dwellings

The knowledge of indoor air humidity in the design phase is important to decide on the appropriate moisture control measures to prevent moisture problems in building components. Because of the uncertain nature of most of the factors affecting the indoor humidity, its accurate prediction in the design phase is not possible. To overcome this problem, the concept of Indoor Climate Classes has been introduced and used in Europe since its early development in the Netherlands in the 1970s up to its recent introduction in a European Standard on the hygrothermal performance of building components.

Pages