Carbon-dioxide (CO2) based demand controlled ventilation (DCV) offers the potential for moreenergy efficient building ventilation compared with constant ventilation rates based on designoccupancy. A number of questions related to CO2 DCV exist regarding energy benefits, optimalcontrol strategies, and indoor air quality impacts for contaminants with source strengths that areindependent of the number of occupants. In order to obtain insight into these issues, a simulationstudy was performed in six commercial and institutional building spaces.
In France, ventilation in new residential buildings must be designed and dimensioned according to the Health regulation (Arrêté du 24 mars 1982) which is basically based on required extract air flow rates. Two points are to be noticed : 1) The extract flo
A concept is investigated for the energy efficient control of residential mechanical ventilation in response to outdoor air temperature and the corresponding stack-driven infiltration. The control concept takes advantage of the natural air leakage characteristics of a house and the ability of temperature-driven stack infiltration to provide ventilation air to the house. As the outdoor to indoor temperature difference increases and natural infiltration increases, the fan operation is reduced, thereby minimizing over-ventilation.
The study reviewed each Code/Standard with respect to requirements relating to acommon set of ventilation factors and criteria. The main factors include the following:1. Protection against Depressurization - given the increase in more tightly built homes,how do the differing C/S protect against combustion gas spillage into the dwelling.2. Ventilation Capacity - what are the requirements for total mechanical air changerates, and high and low airflow capacities?3. Contaminant Removal - what exhaust requirements are there for specific rooms inthe dwelling?4.
Research partners of 10 different countries are developing a computer tool in the framework of IEA ECBCS Annex 36, which helps decision makers to include the most energy-efficient and economic technical retrofit measures into the retrofit of their educational buildings.
For the building team, the design of library, archives and museum facilities brings with it special responsibilities. Archive and conservation facilities require the highest levels of preservation and maintenance of the building environment. Understanding how to maintain and preserve vulnerable materials is a key component to developing a successful design solution.
The control industry integrates more and more recent innovations, especially on the sector of communication networks (bus), control (fuzzy logic, neural networks...) and informatics (hard-and software) for the development of Building Automation and Control Systems of HVAC plants. These complex control strategies are now being implemented on ventilation systems (hybrid systems, mechanical systems, etc) to satisfy energy and environmental issues.
Many recently developed energy-reducing strategies with respect to heat loads in residential interiorsincluded in simulation programs possess extensive capabilities in handling these loads (gains orsinks) for each zone - spatial unit designed for maintaining moist air thermodynamics there.We have taken up procedure, which was primarily dedicated to the influence of the sensor positionsof a room model.
For historical and demographical reasons, in many European countries, an important part of educational building must be retrofitted. These retrofitting must be carried out in a context of reduction of greenhouse emissions and energy consumption.Among different targets for retrofitting, there are the improvement of indoor environment. In fact, educational buildings are particularly vulnerable to indoor environment problems. Studies have indicated a correlation between the way educational buildings are designed, or retrofitted, and student performance.
The peak electrical demand of office building VAV systems will be reduced by about 1.2 Kw/1000 Ft2 by employing an Integrated Systems Demand Control Technology (ISDCT) sequence to reduce peak intake flow by about 56%.Supply, return, and exhaust fan energy decreases with reduced airflows and pressures; and chiller system energy is saved by reduced cooling coil loads.The ISDCT sequence continuously computes zone contaminant concentrations allowing compliance with reference standards.