Describes method for calculating the adventitious ventilation of a building using information from a pressurization test. The method requires a knowledge of the surface pressures on a building, calculated from wind speed and direction, the inside-outside temperature difference, and the distribution and characteristics of openings in the building shell. Applies formulae to threebuildings and finds a great dependence of infiltration on wind direction. Discusses the effect of wind and stack effect, separately and combined.
Suggests use of windbreaks to protect solar collectors and open air swimming pools and to protect buildings from the wind, thus contributing significantly to energy savings. Provides detailed knowledge concerning operation and effects of windbreaks: aerodynamic characteristics, effect of porosity of a windbreak on reduction of wind speed, effect of height and length, angle of incidence of the wind, effects of wind speed, ruggedness of the terrain and thermal stability of the atmosphere.
Describes a sampling programme which measured simultaneously the indoor and outdoor concentrations of pollutants at three sites in Zurich during summer and winter. Gives brief summary of results showing concentrations of CO, NO, NO2 and HCHO and discusses sources of the different pollutants.
Reports the results of three programmes of measurements of ventilation carried out in one-family houses, which in most cases were of the 'council house' type. The first programme measured ventilation rates using tracer gasin two houses room by room. Wind speed and direction were recorded but no general relation between ventilation and wind was found. The second measured ventilation rate in individual rooms in a house under six different wind conditions. The third measured ventilation rates in three identical homes.
Describes standard tests for air leakage, water-tightness and mechanical tests to be carried out on windows. Describes apparatus and test method. Defines normal resistance to air leakage as air penetration of 12 to 60 m3/h/m2 of the surface at a pressure of 10mm. of water. At air penetration of less than 12 m|3/h/m|2 the windows have improved resistance to air penetration.
Describes computer-based method of calculating heating or cooling capacity of a building, or energy consumed or natural temperature reached without air conditioning. Assumes steady state conditions and establishes heat balance in the form of a matrix separating climatic and occupancy effects. Presents intermittent heating dynamic calculation in non-steady state conditions. Treats causes of uncertainty building use, climate data, air infiltration and presents calculation programs developed in building physics laboratory of Liege University.
Describes study and operating principles of device allowing a window (or more usually a light-weight cladding unit) to be placed in variable temperature conditions simulating actual summer and winter conditions, in order to determine the airtightness of the window under these conditions. Describes testing of three plastic window frames in the device and supplies the measured values of the airtightness before, during and after the tests, and the corresponding curves.
Refers to previous article treating application of theory of graphical representation in building services of calculating natural ventilation rates in buildings. Illustrates technique using examples of several buildings. Concludes that at themoment this approach is too complex and costly for general application except in specialised cases. Considers simplified methods may be developed suitable for general use.
Describes different types of weatherstrips and reports ageing and deformation test on strips and tests on air tightness and closing force. Concludes that tubular strips provided the highest degree of airtightness in both windows and doors, while angle strips were only slightly inferior in performance. Air leakage was considerably greater for strips of expanded and foam plastics and fibre strips. Tests on ageing properties indicated that special rubber mixtures such as silicone rubber and epdm were preferable to p.v.c.