An evaluation of a computer code for predicting indoor airflow and heat transfer.

The evaluation of a code can be done by investigating two items: solving the correct equations and solving equations correctly and eficiently. An indoor airflow code VentAirI has been developed and is evaluated here. An evaluating procedure is suggested. The code is characterized by the standard high-Reynolds-number k-E model with wall function, the two-band radiation model and the SIMPLE algorithm. Test examples are: 1. A three-dimensional forced convection problem (Re=5000), 2. A natural convection problem (Ra=5 *10^10), 3.

Airflow and thermal comfort in naturally ventilated classrooms.

The airflow pattern and thermal comfort in a naturally ventilated classroom were predicted using CFD techniques. The CFD model for turbulent flow consists of equations for the conservation of mass, momentum and thermal energy and the equations for the k-E turbulence model, taking account of the effects of buoyancy and obstacles in the room. The thermal comfort was assessed according to the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD).

Advanced ventilation systems.

As part of the AIVC's technical programme, study has been performed on present and advanced ventilation systems. The first part of the study presents a review on demands for basic ventilation of residences and major design considerations forventilation systems. The second part is a review on ventilation systems advanced approaches divided into: air movement control systems; flow quantity control systems; ventilation heat recovery systems; alternative ventilation energy systems.Furthermore a system for the classification of ventilation systems is suggested.

A new approach for the numerical identification of interzonal airflows from tracer gas measurements.

This paper presents a new approach to determine the interzonal airflows of a multizone system using tracer gas measurements. In contrast to methods proposed earlier, the presented method does not use the mass balance as basis for the least squares problem but identifies the interzonal airflows as coefficients of the evolution equations for the concentrations. Therefore estimating the derivatives with respect to the time from measured data is avoided. Furthermore the concentration can be calculated at arbitrary points in time.

A multi-zone model to facilitate predicting natural ventilation through buildings.

A mathematical model has been developed which will facilitate the prediction of infiltration rates within multi-zone buildings. The aim was to cater for: (i) significantly different temperatures in different parts of the building; (ii) flow paths at any height, including vertical connections between zones; and (iii) flow paths extending over large vertical distances. These aims led to the requirement in the associated computer program that the variation of pressure with height be accounted for independently within each zone of the building.

A new passive tracer gas technique for ventilation measurements.

A new passive tracer gas method for ventilation measurements is described. The method utilizes passive tracer gas release from aliquid perfluorocarbon compound contained in a glass vial, equipped with a teflon membrane. Air sampling is also done passively by diffusion through a glass tube containing activated carbon. Quantitative analysis of trapped tracer compound is performed by solvent extraction and gas chromatographic separation using a liquid injection technique. Separation is done with a two-column system and quantitative analysis with an electron capture detector.

Assessing intake contamination from atmospheric dispersion of building exhaust.

The possibility of unacceptable internal air pollution levels can cause concern at the design stage given the potential for cross contamination between building exhausts and ventilation intakes is there. The complexity of airflows around buildings, however, makes it extremely difficult to predict the contamination levels at the intake locations. This paper reports a wind tunnel technique using a model of a proposed building to determine the pollutant levels expected at various inlet locations due to the re-ingestion of noxious emissions from its two stacks.

Pages