Political and economical changes that have been started in Poland since 1989 strongly influenced the building construction market. New owners or managers of institutional buildings have begun the process of retrofitting, focusing on:
In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate it is crucial at the design stage to be able to predict the performance regarding thermal comfort and energy consumption. This paper focus on the practical implementation of Computational Fluid Dynamics (CFD) and the relation to other simulation tools regarding indoor climate.
A new language called Modelica TM for physical modeling is developed in an international effort. The main objective is to make it easy to exchange models and model libraries. The design approach builds on noncausal modeling with true ordinary differential and algebraic equations and the use of object-oriented constructs to facilitate reuse of modeling knowledge. There are already several modeling language based on these ideas available from universities and small companies. There is also significant experience of using them in various applications.
The dynamic thermal interaction between a building and the HV AC systems which service it is still difficult to predict. As this thermal interaction becomes more critical in practice, related knowledge and evaluation tools become increasingly important. It is argued why these need to be based on an integral approach of the overall problem. A research project aimed at development and/or enhancement of building performance evaluation tools for this field of interest is outlined.