The effect of draughts on the steady temperature distribution in a naturally ventilated enclosure

The effect of draughts on the steady thermal stratification established by a localised heat sourceat floor level in a naturally ventilated enclosure with upper and lower openings is considered. Ourexperimental observations in water using models indicate that four different steady flow patterns arepossible depending on the relative areas of the upper and lower openings.

Numerical simulation of the flow field in the kitchen of a residential building with natural ventilation

The main goal of this work is the modeling of the flow field and temperature distribution in thekitchen of a house where natural ventilation techniques were implemented. The Fluent 6.1 commercial CFD software was used. The k- e turbulence model and the Boussinesq approximation for buoyancy were employed. The heat released from a water heater in continuous operation dictates the temperature distribution in the kitchen. Several simulations were performed by varying the boundary conditions and seeking agreement with the available experimental data.

Experimental study of transition phenomena in buoyancy-induced natural ventilation

Experiments were carried out to study transition phenomena in buoyancy-induced natural ventilation in a relatively large-scale enclosure equipped with a localized heat source and two openings (upper and lower) on one of the sidewalls. The process studied is transition from the mixing to the displacement ventilation mode realized by opening the lower vent to different heights while keeping the upper vent fully open. Measurements included inside vertical temperature profiles and air velocity through the upper vent.

Thermal effects on the dispersion of a gaseous contaminant in a naturally-ventilated room

The influence of thermal effects on the dispersion of a gas in a naturally-ventilated room is investigated using CFD in conjunction with measurements. The gas dispersion inside the room, with and without thermal effects, is characterised by a statistical analysis of the CFD-predicted gas concentrations at a large number of points across the room with a view to quantifying the thermal effects. It is concluded that even small temperature differences can lead to significantly different cross flow behaviour and rates of gas concentration decay at the relatively low air change rate considered.