AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

static pressure reset

Simulation of static pressure reset control in comfort ventilation

Variable air volume (VAV) ventilation systems reduce fan power consumption compared to constant air volume (CAV) systems because they supply air according to the airflow demand. However VAV ventilation systems do not take fully into account the potential energy savings as the control strategy operates the terminal boxes and the air handling unit (AHU) independently without pressure integration. The pressure in the main duct is maintained at a constant static pressure (CSP) which corresponds to the pressure required under the design full load condition.

A Static Pressure Reset Control System with a New Type of Flow Damper for Use in Low Pressure Ventilation Systems

The control strategy for mechanical ventilation systems has significant impact on the performance of the system, in terms of energy consumption and correct air distribution. This paper presents a static pressure reset control system employing a new type of flow damper with lower pressure loss for use in low pressure ventilation systems. The flow damper has a droplet shape that minimizes turbulence generation and the resulting pressure loss. The performance of the damper was examined by making measurements of pressure loss and airflow.

System Design for Demand Controlled Ventilation in Multi-Family Dwellings

This paper presents an investigation into solutions for the system design of a centralized DCV system in multi-family dwellings. The design focused on simple and inexpensive solutions. A cost benefit estimate showed that the initial cost of implementing DCV in a system with an efficient heat exchanger should not exceed 3400 DKK per dwelling in regions with weather conditions similar to the Danish climate. A design expected to fulfil this requirement was investigated in detail with regard to its electricity consumption by evaluation of different control strategies.