Response of contaminant detection sensors and sensor systems in a commercial aircraft cabin

To reduce the potential risk of airborne infectious diseases during an outbreak or to detect a chemical/biological release by a terrorist, it is essential to place appropriate chemical/biological sensors in commercial airliner cabins. This investigation studied sensor responses along the length of a fully occupied twin-aisle cabin with 210 seats by using a validated Computational Fluid Dynamics (CFD) program. The results revealed that seating arrangements can make cross sectional airflow pattern considerably asymmetrical.

Optimization of Aerosol Sensor Placement in Common Ventilation Ductwork

Aerosol detection in HVAC duct components is a critical component of contaminant detection and analysis. Incorrect placement of a sensor inlet within the ductwork can have a significant, deleterious effect on capture efficiency and sample accuracy. Computational fluid dynamics studies were conducted of straight rectangular cross-section ductwork and a 90° bend to determine flow patterns and simulations of particulate injections were made at various locations across the inlet. The resultant particle distributions were analyzed to determine the optimal placement for a sensor inlet.