A novel algorithm for demand-control of a single-room ventilation unit with a rotary heat exchanger

Energy renovations seek to improve the airtightness of dwellings and thus require ventilation and heat recovery to maintain or improve energy-efficiency, indoor climate, and durability. These ventilation systems often control the indoor air of an apartment as a single climate zone, which neglects the different demands of individual rooms. Renovations result in greater retention of heat and air inside the building envelope, so rooms become especially sensitive to gains from solar radiation, occupancy, moisture loads and pollutants.

Rotary heat exchanger model for control and energy calculations

Rotary heat recovery exchangers are widely used in ventilation systems, and the units are known for their high efficiency and almost maintenance-free operation. Temperature efficiencies above 80% are not uncommon. Performing dynamical analyses of rotary heat exchangers are in many situations advantageous, especially in connection to installation of such equipment in VAV systems. Efficiencies and flows are varying parameters that are crucial for energy calculations, but also for control. The dynamical analysis can effectively be carried out by addressing a dynamical model.