Comparison between infiltration rate predictions using the divide-by-20 rule of thumb and real measurements

Across different territories there are various normative models for assessing energy demand of domestic dwellings, which use simplified approaches to account for the heat loss due to the air infiltration of a building.  For instance, the United Kingdom uses a dwelling energy model, known as the Standard Assessment Procedure (SAP), and this utilises a process where the measured air permeability value (q50), is simply divided by 20 to provide an infiltration rate (subsequent modification factors are then used for factors such as sheltering etc.).

On the experimental validation of the infiltration model DOMVENT3D

Buildings represent approximately 40% of global energy demand and heat loss induced by uncontrolled air leakage through the building fabric can represent up to one third of the heating load in a building. This leakage of air at ambient pressure levels, is known as air infiltration and can be measured by tracer gas means, however, the method is disruptive and invasive. Air infiltration models are a non-disruptive way to calculate predictive values for air infiltration in buildings.

The relationship between permeability and infiltration in conjoined dwellings

The importance of adventitious air leakage under normal operational conditions and its reduction in order to save energy is highlighted by the relvant building standards of many countries. This operational leakage is often inferred via the measurement of air permeability, a physical property of a building that indicates the resistance of its fabric to airflow. A building’s permeability is the measure of airflow rate through its envelope at a constant pressure differential of 50 Pascals.

Effect of Party Wall Permeability on Estimations of Infiltration from Air Leakage

The importance of reducing adventitious infiltration in order to save energy is highlighted by the relevant building standards of many countries.  This operational infiltration is often inferred via the measurement of the air leakage rate at a pressure differential of 50 Pascals.  Some building codes, such as the UK’s Standard Assessment Procedure, assume a simple relationship between the air leakage rate and mean infiltration rate during the heating season, the so-called leakage-infiltration ratio, which is scaled to account for the physical and environmental properties of a dwelling.  The

Soil gas measurements below foundation depth improve indoorradon prediction

A soil gas measurement method developed earlier [1] was applied to boreholes drilled to belowfoundation depth. Radon concentration and permeability were measured at 50 cm intervals. Inradon prone areas permeability showed to increase with depth over several orders of magnitude,indicating a low permeability top layer with a thickness of 0.5 m and more. A radon availabilityindex (RAI) was empirically defined and the maximum RAI of each boring proved to be a reliableindicator for radon problems in nearby houses.