Introduction: Why performance-based assessment methods? Overview of the needs and the possibilities

In future building regulations 2020, building performance is going to be extended to global performance, including indoor air quality (IAQ). In the energy performance (EP) field, successive regulations pushed for a "performance-based" approach, based on an energy consumption requirement at the design stage. Nevertheless, ventilation regulations throughout the world are still mostly based on prescriptive approaches, setting airflows requirements. A performance-based approach for ventilation would insure that ventilation is designed to avoid risks for occupant’s health. 

Performance-based assessment methods for ventilation systems: Overview of on-going work in France and in Europe

In the field of energy performance, successive regulations pushed a "performance-based" approach, based at least on an energy consumption requirement at the design stage for heating and/or cooling systems (Spekkink 2005). Nevertheless, in the field of building ventilation, regulations throughout the world are mainly still based on “prescriptive” approaches, using airflows or air change rates requirements.  

Lessons learned from a ten-year monitoring in residential buildings equipped with humidity based demand controlled ventilation in France

Humidity-based DCV systems have been widely used in France for 35 years and are considered as a reference system, including for low-energy residential buildings. Indeed, most of the new residential buildings, which must be low-energy buildings to comply with the RT 2012 energy performance regulation, are equipped with such systems. Feedbacks from two long-term studies show the durability of the humidity sensitive components and show the robustness of this system to bad maintenance or use by occupants.

Methods to evaluate gas phase air-cleaning technologies

Gas-phase air cleaning methodologies have been considered as an attractive and cost-benefit alternative, and supplement to the traditional ventilation systems securing that air quality in buildings is meeting the prescribed standards. The systems can use the air that has been already conditioned to the required temperature and relative humidity, and by removing airborne gaseous pollutants, this air can be supplied indoors again.

A review of performance-based approaches to residential smart ventilation

In order to better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or IAQ advantage (or both) and less when it provides a disadvantage. This would be done in a manner that provides improved home energy and IAQ performance, relative to a “dumb” base case. This paper highlights that a favourable context exists in many countries, with regulations and standards proposing “performance-based approaches”.

A review of smart ventilation energy and IAQ performance in residential buildings

In order to better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or IAQ advantage (or both) and less when it provides a disadvantage. This would be done in a manner that provides improved home energy and IAQ performance, relative to a “dumb” base case. A favorable context exists in many countries to develop smart ventilation strategies.

Concentration versus m3 air per hour – the battle of assessors

                     

Ventilation performance and indoor air pollutants diagnosis in 21 French low energy homes

Ventilation’s historical goal has been to ensure sufficient air change rates in buildings from a hygienic point of view. Regarding its potential impact on energy consumption, ventilation is being reconsidered today. An important challenge for low energy buildings lies in the need to master airflows through the building envelope. Data collected from controls in 1287 recent dwellings shows us that 68 % of the dwellings don't respect the French airing regulation.

The Influence of Heat, Air Jet Cooling and Noise on Performance in Classrooms

The quality of indoor environments influences satisfaction, health, and work performance of occupants. Additional understanding of the theoretical and practical value of individual indoor parameters in relation to health and performance aids indoor climate designers to obtain desired outcomes. This also results in expenditure savings and increased revenue as well as health care and improved productivity. This paper reports on two experiments that investigated how heat, cooling strategy and background noise influence performance in a full-scale classroom mockup setting.

Pages