AIVC - Air Infiltration and Ventilation Centre

Search form


You are here


passive cooling

Numerical optimization and experimental testing of a new low pressure heat exchanger (LoPHEx) for passive ventilation of buildings

Reducing primary energy consumption is an essential issue for the sector of building construction. This paper refers to building ventilation systems and focuses on low pressure flat plate heat exchangers, designed for low pressure drops and low air velocity, minimizing the electrical consumption of fans. The device is conceived for working within passive ventilation systems, as a ventilation heat recovery stage during winter and sensible heat dissipation during summer.

Cooling potential of natural ventilation in representative climates of central and southern Europe

This study analyses the climate-dependent passive ventilative cooling (PVC) potential in central and southern Europe. This analysis was carried out in two phases: (1) evaluation of PVC potential as a climate-dependent variable, in different locations representative of European climate zones for both wind-drive airflow (comfort ventilation) and temperature gradient (environmental and structural cooling); (2) verification of the above PVC potential through dynamic energy simulations on a reference-building model located in selected cities.

Geo-climatic applicability of natural ventilative cooling in the Mediterranean area

The present study aims at assessing the geo-climatic potential applicability of controlled natural ventilation (CNV) as a natural ventilative cooling (NVC) technique in the Mediterranean area. This assessment was carried following two approaches: (1) a climate-dependent evaluation of the NVC potential of different locations considering a “virtual space”; (2) a calculation of the NVC potential of different locations considering a “real” building through dynamic energy simulations.

Direct evaporative passive cooling of building. A comparison amid simplified simulation models based on experimental data

Different simplified simulation models of a Passive Downdraught Evaporative Cooling tower (PDEC) were compared by using experimental data. Among these, a series of tests on a Passive Downdraught Evaporative Cooling tower (PDEC) were carried out at the SyTIn (Systems for Technology Innovation) Laboratory of the Department of Architecture and Design, Politecnico di Torino. In addition, other monitored databases were taken from literature and used as input data for the simplified models.

Geo-climatic applicability of evaporative and ventilative cooling in China

The paper aims to evaluate the geo-climatic applicability of two different passive cooling strategies: the passive evaporative cooling (PEC) and the natural ventilative cooling (NVC) in China. The two cooling techniques are analysed following a climate-related approach considering a ‘virtual Space’. NVC potential is assessed by analysing the typical meteorological year related to a set of 105 locations representing different typical Chinese climate conditions. A parametric approach is used in order to virtualise the geo-climatic potential of this cooling technique.

Ventilative cooling in a single-family active house from design stage to user experience

Ventilative cooling through window airing presents a promising potential for low energy houses in order to avoid overheating risks and to reduce energy consumption of air conditioners. This case study aims at describing how ventilative cooling has been taken into account as from the design stage of a low-energy single-family active house located near Paris. Its performance on thermal comfort and air renewal, monitored from both sociological (feedback from a family) and scientific approach, is described and compares these two qualitative and quantitative approaches.

Automated window opening control system to address thermal discomfort risk in energy renovated dwellings. Summertime assessment

Major and deep energy renovations of single-family houses (more than 60% of the building stock) are expected in Europe over the next several years (Psomas et al., 2016a). A number of research projects have documented and verified overheating risk during the design and operation phase in nearly zero energy or existing renovated single-family houses without mechanical cooling systems in temperate climates. Post occupancy surveys and comfort studies have also monitored high indoor temperatures over 27oC and 28oC even in Northern countries (Psomas et al., 2016a).

Energy Performance Indicators for Ventilative Cooling

The lack of indicators assessing ventilative cooling effectiveness in a way to compare it with active cooling technics, makes its acceptance more difficult. Practitioners, norms, standards and guidelines are used to design and evaluate cooling systems in terms of Cooling Power (CP) or Seasonal Energy Efficiency Ratio (SEER). What could be the CP of a passive technique based on a day to night offset of the cooling process? What could be the SEER of mechanical night ventilation for summer cooling?

Automatic natural ventilation in large spaces: a passive ventilation technology for passive buildings

For zero and low energy buildings, high-energy efficiency ventilation is very often confused with a complex mechanical ventilation system with heat recovery. In school gymnasiums, where large volumes have to be ventilated, and where intermittent occupation is very usual, demand controlled natural ventilation has several advantages, making this technique very attractive. High stack height makes natural ventilation very efficient, limiting the necessary number and dimensions of windows.

Evaporative Cooling and Ventilation Control Strategies for a Kindergarten in Mediterranean Climate

Aim of this work has been to determine the effectiveness of evaporative cooling and ventilation control strategies on a case study to ensure an adequate combination between energy efficiency and high levels of indoor comfort.
The case study has been a kindergarten, situated in the context of the climate continental Mediterranean area (Cerignola, Italy, 41°16'00"N, 15°54'00"E, 120 m asl), oriented on an east/west axis, classrooms south faced, and the services zone to north.