The Reintroduction of Natural Ventilation to a 19th Century Opera House, Utilising Calibrated Computer Simulation and User Operation

The Royal Wanganui Opera House (RWOH), in Whanganui, New Zealand, was constructed in 1899, and now seats 830 people. This building was designed with a natural ventilation system; however, this system is no longer in operation and the RWOH has received regular complaints from patrons regarding indoor thermal comfort. Various options for mechanical systems to improve indoor comfort during summer performances have been considered, but have been deemed too costly. The RWOH is listed with Heritage New Zealand as a Category 1 heritage building.

Challenges of using passive ventilation to control the overheating of dwellings in noisy environments

Where residential developments rely on opening windows to control overheating, there can be a compromise between allowing excessive noise ingress with windows open, or excessive temperatures with windows closed. This problem is exacerbated by the move towards better insulated, more airtight buildings and the need, particularly in urban areas, to consider development on noisier sites. A working group has been formed by the Association of Noise Consultants to provide guidance on acoustic conditions and design when considering both the provision of ventilation and prevention of overheating.

Analysis on CO2 Emissions Reduction Effect of Zero Energy Multi-famiy Housing to cope with UNFCCC

Korean government established a target to reduce greenhouse gas (“GHG”) emissions to 30% by 2020 to cope with the United Nations Framework Convention on Climate Change (UNFCCC) and secure its national competitiveness, and prepared a roadmap to develop this project. Especially, the government set up the objective of Zero Energy Consumption for the newly constructed multi-family housings by 2025 to reduce CO2 in the building sector.

Radon and radon daughter measurements in solar energy conservation buildings

Measurements of radon and radon daughters in 11 buildings in five states, using active or passive solar heating showed no significant increase in concentration over the levels measured in buildings with conventional heating systems. Radon levels in two buildings using rock storage in their active solar systems exceeded the U.S. Nuclear Regulatory Commission's 10 CFR 20 limit of 3 pCi/l for continuous exposure. In the remainder of the buildings, radon concentrations were found to be at levels considered to be normal.