Fine dust measurement in ducts of balanced ventilation systems

The measurement of particulate matter (PM) in rooms has gained interest in the last decade. However, the sensors that are currently used are intended for use in still standing air and cannot be applied to ventilation ducts with a typical velocity up to a couple of meters per second. Therefore, a prototype of a measurement module for particulate matter has been developed for use in ducts of ventilation systems. To the author’s knowledge, this has not been done before.

On-Site Capture Efficiency of Kitchen Range Hood Based on Particle Diameters and Exhaust Flow Rates

Particles generated from cooking activities are the biggest contributor to the concentration of indoor particles in most homes, and they are not easily removed without natural or mechanical ventilation. As more focus is directed on human health, kitchen range hoods have drawn increasing attention and their performance in various conditions needs to be evaluated. Consequently, in this study, we performed measurements to establish the particle capture efficiency of a kitchen range hood for various particle diameters at different exhaust flow rates.

The impact of increased occupancy on particulate matter concentrations in mechanically-ventilated residential buildings in a subtropical climate

Indoor air pollution can pose a serious threat to human health and can increase the risk of early mortality. Studies have shown that human exposure to indoor pollution is more common than to outdoor pollution, especially where people spend the majority of their time indoors at home. Heating, ventilating, and air conditioning (HVAC) systems are used in buildings to regulate internal climate to improve the comfort level for occupants. In addition, ventilation rates are often increased to maintain appropriate Indoor Air Quality (IAQ).

HEPA filters to improve vehicle cabin air quality – advantages and limitations

Maintaining a good indoor air quality level has received growing attention in the past years. Especially the smaller particles like PM2.5 (particles of aerodynamic diameter less than 2.5 μm) and UFP (ultrafine particles, aerodynamic diameter less than 100 nm) might lead to higher health risks. Vehicle cabin is one challenging environment due to the elevated particle concentrations from the surroundings.

Sensor Location Methodology for Improved IEQ Monitoring in Working Environments

In the current era, sensors in buildings have become an essential requirement for wide applications such as monitoring indoor air quality (IAQ), thermal and environmental conditions, controlling building heating, ventilation, and air-conditioning systems (HVAC). To accurately control the IAQ for all areas in the indoor space, it is necessary to obtain considerable data from different locations in the space for more precision.

Real-life ventilation filter performance: final results of an in-depth study

Within the ventilation principle of buildings, the outdoor air is considered as a source of fresh, "clean" air. However, as we all know, this is not always the case. Although the outdoor air quality in our cities already improved, the concentrations of certain pollutants, especially particulate matter and peak pollutions of ozone (and its precursors nitrogen oxides and volatile organic compounds), remain problematic.

The role of ventilation in the penetration of outdoor air pollutants

Outdoor air is usually considered as a source of clean air in building ventilation principles. Although outdoor air quality has already improved in our cities, this principle may be challenged. Particulate matter remains especially problematic. This simulation study investigates the role that the mechanical ventilation system, with or without filtration, plays in the penetration of outdoor air pollutants, which may have adverse effects on indoor air quality and occupant health. Based on the Brussels PM2.5 pollutant data, several configurations were examined using the CONTAM software.

Ambient air filter efficiency in airtight, highly energy efficient dwellings – A simulation study to evaluate benefits and associated energy costs

Highly energy efficient buildings such as ones built to the Passive House standard, require a very airtight building envelope and the installation of a mechanical ventilation with heat recovery (MVHR). MVHR systems incorporate ambient air filters, which reduce the introduction of particulate matter (PM) from outdoor sources into the dwelling. However, indoor PM sources, e.g. cooking, can also contribute substantially to occupants’ exposure and need to be accounted for when designing ventilation or deriving recommendations for filter classes. 

Out2In: impact of filtration and air purification on the penetration of outdoor air pollutants into the indoor environment by ventilation

Within the ventilation principle of buildings, the outdoor air is considered as a source of fresh, "clean" air. Outdoor air quality monitoring by environmental agencies, academic research projects and a broad range of citizen science projects show that this is not always the case. Although the outdoor air quality in our cities already improved, the concentrations of certain pollutants, especially particulate matter and peak pollutions of ozone (and its precursors nitrogen oxides and volatile organic compounds), remain problematic.

The Assessment of Particulate Matter (PM2.5) Removal Efficiency on Air Cleaner Products through Full Scale Test in Korea

This study is designed to investigate the particulate matter removal efficiency of domestic air cleaner products and seeks to compare the particulate matter removal efficiency in a laboratory with that in real life. 

Pages