Submitted by Maria.Kapsalaki on Thu, 03/02/2023 - 14:55
Airtight and highly insulated buildings are subjected to overheating risks, even in moderate climates, due to unforeseeable events like frequent heatwaves and power outages. Educational buildings share a major portion of building stocks and a large percentage of the energy is expended in maintaining thermal comfort in these buildings. Overheating risks in educational buildings can lead to heat-stress and negatively impact the health conditions and also cognitive performance of the occupants.
Submitted by Maria.Kapsalaki on Thu, 03/02/2023 - 14:53
The use of the word “resilience” has increased significantly since 2010, however, there is a lack of understanding around 1) how thermal resilience is defined (where some definitions were offered only recently) and 2) what distinguishes it from typical overheating assessments. In addition to this, there is a lack of uptake in the remote monitoring industry (which uses low-cost solutions) when it comes to typical parameters used in thermal comfort studies and there is need to demonstrate how resilience performance can be reported going forward.
In the framework of The Trento EEMI Bauhaus Week, the European Mortgage Federation - European Covered Bond Council (EMF-ECBC) released a video-”call to action” (for distribution to 2000 banks and 5000 major companies) about the decarbonisation of buildings and the heat mitigation in cities.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 09:48
Overheating in buildings is expected to increase as global warming continues. This could lead to heatrelated problems ranging from thermal-discomfort and productivity-reduction to illness as well as death. From the indoor-overheating point of view, the sensitivity of 9,216 Dutch dwelling-case to the climate change is quantified and ranked using detailed simulation and post-processing calculations. The results show that the sensitivity depends significantly on the dwelling’s design/operation characteristics. Minimally-ventilated dwellings are the most sensitive ones.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 09:22
The increasing number of highly insulated and air tight buildings leads to the concern of indoor environment overheating and related comfort and health issues. This can already happen in a temperate climate as found in the Netherlands. This work studies the ventilative cooling process as a possibility to avoid overheated dwellings. A monitored dutch passive house was modelled in Trnsys and the impact of increasing air flow rates on indoor temperatures was simulated. The most overheated zone was chosen to be analysed.
Submitted by Maria.Kapsalaki on Fri, 02/07/2020 - 09:39
Regional climate change in cities is the most documented phenomenon of climate change . Higher urban temperatures are documented experimentally for more than 450 major cities in the world. Numerous investigations demonstrate that the mean magnitude of the temperature increase may exceed 4-6 C, while at the peak it may exceed 10 C. The serious increase of the frequency and the strength of heat waves creates strong synergies between the global and regional climate change and intensify the magnitude of the overheating
Submitted by Maria.Kapsalaki on Wed, 04/17/2019 - 14:59
Advancing energy efficient renovation solutions in buildings necessitate adopting high-insulation and airtightness to avoid heat loss through transmission and infiltration, which can result in overheating. Elevated indoor temperatures have a highly negative effect on building occupants’ health, wellbeing and productivity. With the possibility of remote working, people spend more time at home, and therefore addressing the elevated indoor temperatures and the overheating risks in residential buildings proves to be essential.
Submitted by Maria.Kapsalaki on Thu, 11/23/2017 - 15:59
Major and deep energy renovations of single-family houses (more than 60% of the building stock) are expected in Europe over the next several years (Psomas et al., 2016a). A number of research projects have documented and verified overheating risk during the design and operation phase in nearly zero energy or existing renovated single-family houses without mechanical cooling systems in temperate climates. Post occupancy surveys and comfort studies have also monitored high indoor temperatures over 27oC and 28oC even in Northern countries (Psomas et al., 2016a).
Submitted by Maria.Kapsalaki on Thu, 11/23/2017 - 15:57
Overheating in domestic homes, specifically in built up urban areas, has become a pressing problem throughout the UK. It is likely to become a costly energy problem in years to come if passive design strategies are not fully understood and integrated. This research looks to investigate how internal and external solar shading systems impact on operative temperatures when differing blinds together with a night time natural ventilation strategy are adopted within a renovated block of flats in North London.