A numerical study on the role of leakage distribution and internal leakages under unsteady wind conditions

The existence of air leakages in a building has been very clearly stated as an important reason for energy loss. The decrease in the efficiency of the mechanical ventilation has also been clarified. The global demand for achieving nearly zero-energy buildings makes the uncontrolled leakage paths even more undesired. Despite the fact that steady state measurements of in- and exfiltration rates offer a simple and easy way of estimating the airtightness level of an eclosure, a supplement to those methods might be imposed.

Behavior of leakages exposed to dynamic wind loads. A numerical study using CDF on a single zone model

Wind is a potential dominant factor regarding the air infiltration through building envelopes. Due to its dynamic characteristics, quite complex aerodynamic phenomena arise around a structure or through cracks and openings. Energy perfomance is influenced by the climate conditions and thus it should be much more researched. Despite the fact that steady state measurements of infiltration rates offer a simple and easy way of estimating an enclosure’s airtightness level, a supplement to those methods might be imposed.

Duct leakage in European buildings: status and perspectives.

A large number of modem European buildings are equipped with ducted air distribution systems. To investigate the implications of duct leakage, a field study was performed on 42 duct systems in Belgium and France. The measurement data confirm the findings of the few earlier experimental investigations on these matters in Europe. In our sample, the leakage rate appears to be typically three times greater than the maximum permitted leakage adopted in EUROVENT 2/2 (Class A).