New release! AIVC Contributed Report 19

We are now pleased to announce the release of AIVC's Contributed Report o19: Indoor Air Quality Design and Control in Low-Energy Residential Buildings - EBC Annex 68 | Subtask 4: Current challenges, selected case studies and innovative solutions covering indoor air quality, ventilation design and control in residences! 

English

CR19: Indoor Air Quality Design and Control in Low-Energy Residential Buildings - EBC Annex 68 | Subtask 4: Current challenges, selected case studies and innovative solutions covering indoor air quality, ventilation design and control in residences

The objective of Subtask 4 in the IEA EBC Annec 68 was to integrate knowledge and results from remaining Subtasks and present them in the context with current knowledge. The focus of the Subtask 4 was on practitioners dealing with ensuring high Indoor Air Quality (IAQ) in modern low-energy residences, the demands and challenges they meet during daily work. This especially includes architects and ventilation designers, facility managers, property developers and employees of public authorities. This publication is a result if Subtask 4’s work.

CR 17: Indoor Air Quality Design and Control in Low-energy Residential Buildings- Annex 68 | Subtask 1: Defining the metrics | In the search of indices to evaluate the Indoor Air Quality of low-energy residential buildings

The objective of present work was to develop the metric that assess the performance of solutions securing high indoor air quality in low-energy (modern) residential buildings. This was achieved by summarizing data on the levels and types of gaseous pollutants and particulate matter in low-energy buildings and comparing them with the existing exposure limits for pollutants.

IEA EBC Annex 68 – Subtask 4, Strategies for design and control of buildings

The objectives of Subtask 4 are to develop design and control strategies for energy efficient ventilation in residential buildings which ensure high indoor air quality. The strategies must go beyond the current common practice and actively utilize recent research findings regarding indoor air pollutants and combined heat, air and moisture transfer as well as benefit from recent advances in sensor technology and controls.

IEA EBC Annex 68 – Subtask 3, Modelling

The objectives of Subtask 3 Modeling are to improve the understanding and develop prediction models on the impacts of outdoor pollutants, thermal environment, building materials and envelope, and indoor furnishing and occupant activities on the indoor air quality, and the energy necessary to achieve the desired IAQ level in residential buildings, considering the IAQ metrics and pollution loads to be developed in Subtask 1 and 2, respectively.

IEA EBC Annex 68 – Subtask 2, Pollutant Loads in Buildings

First the Subtask will organize a literature survey and make researcher contacts to gather relevant data and existing knowledge on major pollutant sources and loads in buildings, including models. Laboratory testing and model setup to provide examples of new types of data which shall be beneficial to improve knowledge on combined effects that must be taken into consideration in order to achieve new paradigms for energy optimal operation of buildings.

IEA EBC Annex 68 – Subtask 1: Defining the metrics

Subtask 1 of IEA EBC Annex 68 will aim at defining the metrics to enable a proper consideration of both energy and IAQ benefit in building design and operation

IEA EBC Annex 68 – Indoor Air Quality Design and Control in Low Energy Residential Buildings

The overall objective of the IEA EBC Annex 68 is to provide scientific basis usable for optimal and practically applicable design and control strategies for high Indoor Air Quality (IAQ) in residential buildings. Naturally, those strategies should ensure minimal possible energy use. The project aims to gather existing and provide new data on pollution sources in buildings, model the indoor hydrothermal conditions and air quality as well as thermal systems, and will look to ways to optimize the provision of ventilation and air-conditioning.