Experimental Measurements of Particles and CO2 Exhaled by a Manikin in a Hospital Room

The relation between the concentration and particle size of the human breathing and the way in which these particles are dispersed in hospital indoor environments are studied in this research. Breathing thermal manikins are used to, experimentally, simulate a human person and its breathing activity. Two breathing thermal manikins are placed in a hospital room, simulating an infected patient, together with another standing manikin simulating a health worker.

Experimental and Numerical Investigation of Air Distribution in a Large Space

A literature review has revealed that there is a very limited number of numerical or experimental studies of the air flow for mechanically ventilated large occupied rooms. Existing literature suggests that a room with more than 5 meters floor-to-ceiling height can be considered as a large space. The aim of this paper is to present a set of detailed air temperature and velocity measurements in a large open plan office located in south England.

Response of contaminant detection sensors and sensor systems in a commercial aircraft cabin

To reduce the potential risk of airborne infectious diseases during an outbreak or to detect a chemical/biological release by a terrorist, it is essential to place appropriate chemical/biological sensors in commercial airliner cabins. This investigation studied sensor responses along the length of a fully occupied twin-aisle cabin with 210 seats by using a validated Computational Fluid Dynamics (CFD) program. The results revealed that seating arrangements can make cross sectional airflow pattern considerably asymmetrical.