Predictive control for an all-air ventilation system in an educational nZEB building

In school and office buildings, the ventilation system has a large contribution to the total energy use. A control strategy that adjusts the operation to the actual demand can significantly reduce the energy use. This is important in rooms with a highly fluctuating occupancy profile, such as classrooms and open offices. However, a standard rule-based control (RBC) strategy is reactive, making the installation 'lag behind' in relation to the demand. As a result, a good indoor climate is not always guaranteed and the actual energy saving potential is lower than predicted.

Numerical analysis of thermal comfort in Near-Zero Energy Buildings (NZEB) with light radiant ceilings and diffuse ventilation

Renewable energy sources for heating and cooling buildings usually have temperatures close to room temperature and therefore a limited convertibility potential, i.e. they are of low value. To exploit low-valued energy sources Low Temperature Heating and High Temperature Cooling (LTH-HTC) systems must be developed.

Experiences regarding draught effects for ventilative cooling in cold climate

New buildings have to satisfy stricter standards regarding energy efficiency and consumption. This results in higher insulation levels and lower air leakages that reduce heating demands. However, together with the heating demands reductions, higher temperatures in summer and particularly shoulder season are more frequent even at moderate to cold climates. In order to ensure acceptable indoor environment quality, removal of excess heat becomes unavoidable. Using mechanical cooling in residential buildings is considered incompatible with achieving zero energy buildings (ZEB).

Energy saving as a consequence of the proposed change in Spanish regulations relating to indoor air quality

Recently research at the Eduardo Torroja Institute for construction sciences proposes a new wording for the IAQ regulations for dwellings included in the Spanish Building Code.
The main goal of the earlier research was to adapt required ventilation rates to real needs to achieve a reduction of ventilation rates and energy demand with no negative impact on indoor air quality.

Energy and IAQ friendly variable ventilation rates, according with the proposed indoor air quality regulations included in the Spanish building code.

The Spanish Building Code (BC) regulates indoor air quality (IAQ) requirements in dwellings by establishing threshold continuous flow rates according to the occupancy, use of the rooms and their usable area. The implementation of this threshold flow allow adequate IAQ.
A revised IAQ requirement have been proposed. These new requirement quantifies the IAQ as a function of CO2 concentration which means an non continuous flow rates ventilation systems will be able to be used.

Energy use consequences of ventilative cooling in a ZEB residential building

New buildings have to satisfy ever-tightening standards regarding energy efficiency and consumption. This results in higher insulation levels and lower air leakages that reduce heating demands. However, even at moderate outdoor temperatures these buildings are easily warmed up to such a degree that in order to ensure acceptable indoor environment quality, removal of excess heat becomes unavoidable. Use of electric energy related to mechanical cooling is considered incompatible with achieving zero energy buildings (ZEB).

Optimal window opening based on natural ventilation measurements

From the energy point of view, buildings should be as tight as possible. But lack of ventilation will result in high level of indoor pollutants, which is harmful for occupants. Numerous studies find that lack of ventilation could cause symptoms for occupants, which are characterized by World Health Organization as Sick Building Syndrome.

An Energy Saving Ventilation Strategy for Short-Term Occupied Rooms based on the Time-Dependent Concentration of CO2

Most HVAC systems are designed to supply air based on assumed (usually maximal) rather than actual occupancy, therefore often resulting in over-ventilation. The concept and theories of demand-controlled ventilation (DCV), which are to find better ventilation strategies according to actual occupancy, have been developed for more than two decades and have been applied to many situations. However, a certain type of room (i.e. short-term occupied room) seems to have been neglected in the literature of DCV.

Daylight quality in healthcare architecture - Developing a framework

Through history; a large body of research has found a relationship between the IEQ and the recovery of patients in healthcare facilities. IEQ factors include natural ventilation, daylighting, acoustics, materials off gassing, etc... This research is to identify the guidelines to healthy daylighting in hospital buildings. Research methods include grounded theory finding through intensive literature review and analysis of successful international examples.

Using building performance simulation to save residential space heating energy: A pilot testing

This paper describes a pilot study testing the applicability of using building performance simulation (BPS) to quantify the impact of 28 energy saving behaviour changes on the residential space heating demand, based on a mid-terraced house located in the southwest of England. The 28 behaviour change options were collected based on a combination of literature review and expert knowledge. DesignBuilder V3.2, whose thermal dynamic simulation engine is Energyplus 7.2, was used to predict the impact of each behaviour change option on the space heating demand of the case study house.