An economic assessment of some energy conservation measures in housing and other buildings.

Discusses insulation of lofts, roofs, walls, windows and floors, natural ventilation of dwellings and mechanical ventilation with heat recovery in dwellings. Considers cost benefits of weatherstripping and constant-flow ventilators for naturally ventilated houses. Concludes that installation of mechanical ventilation with heat recovery is uneconomic, but adding a heatexchanger to an existing mechanical ventilation system has economic benefits.

Survey of occupants in dwellings with an air heating and ventilation system. Bewonersonderzoek in woningen voorzien van een luchtverwarmings- enventilatiesysteem.

50 occupants of terraced houses, divided into 4 groups, were surveyed three times in October 1981, February 1983 and March 1983. The first group had Isolair air heating and ventilating systems, and were well insulated with double glazing. The second group was heated by radiators and had the same insulation as group 1. Groups 3 and 4 had normal insulation. Results of the surveys are given. The air heating and ventilating system did not provide the level of satisfaction hoped for. The group with the air heating and ventilating system was surveyed again in March 1984.

Cost-benefit analysis of decreased ventilation rates and radon exhalation from building materials.

Decreased ventilation, achieved by weather stripping and other tightening measures, is the most cost effective way to energy conservation. A very low investment can result in a considerable decrease in ventilation rate. For a typical detached

A consequence analysis of new Norwegian building regulations on air infiltration.

In 1981 Norwegian building regulations introduced quantitative requirements to air leakages in different types of buildings. The requirements were formed as maximum allowed air changes per hour at 50 Pa pressure difference according to the pressurization method. To evaluate the consequences of these new requirementsimposed to Norwegian building industry a model proposed by the Nordic Committee for Building Regulations (NKB) was used. The average air leakages of residential buildings , built before the new requirements,are known through a research project performed i n 1979.

Infiltration, energy conservation and indoor air quality.

One option of reducing residential energy consumption is to improve air tightness but adequate ventilation must be provided for health reasons. Sources of infiltration and factors affecting infiltration rates are described, with methods for quantifying and comparing rates. The relationship with air quality is explained and the effect that air quality has on respiration and health. Typical indoor pollutants are carbon monoxide, carbon dioxide, nitrogen oxides, radon and radon progeny, formaldehyde gas, particulates, tobacco smoke and odours.

Retrofitting existing homes for energy conservation: An economic analysis.

Examines the economic aspects of energy conservation techniques suitable for retrofitting into existing homes. Includes insulation, storm windows and doors, and weatherstripping. The object of this study is to determine that combination of techniques which will maximise net dollar savings in life-cycle operating costs for heating and cooling operations in existing homes, subject to specific climate conditions, fuel costs and retrofitting costs.

Pages