Transition from bi-directional to unidirectional flow in a doorway.

The air flow in a doorway is governed by density difference caused by temperature difference and pressure difference caused by mechanical ventilation. Tests have been carried out in a unique indoor test house where the room to room to temperature difference could be controlled very accurately with a new control system. In addition to these tests some tests were carried out in a scale model with water as the operating fluid. Two main criteria of unidirectional flow in a doorway have been explored:

Time-dependent displacement ventilation caused by variations in internal heat gains: application to a lecture theatre.

We examine transient displacement flows in naturally ventilated spaces that are subject to an increase in internal heat gains as in, for example, an empty lecture theatre which is then occupied by an audience. Heat gains create a layer of warm air at the ceiling which initially increases in depth and temperature, and descends towards the occupied regions. A theoretical model is developed to predict the time-dependent movement of the interface that separates the warm upper and cool lower layers of air, and comparisons are made with the results of laboratory experiments.