Improvement of comfort and energy efficiency in existing buildings using adaptive thermal comfort algorithm

Comfort and energy saving are two important concepts treated in current buildings in order to maintain a good air quality reducing the energy consumption. According to International Energy Agency (IEA) buildings represent 32% of total final energy consumption, and the need for reduction of CO2 emission leads to pay attention to the energy demand in buildings. On the other hand maintaining a good-quality environment helps to improve the productivity and effectiveness of workers.

The indoor air quality observatory - outcomes of a decade of research and perspectives

For over a decade now, the OQAI — Observatoire de la qualité de l’air intérieur [French observatory for indoor air quality] — has been leading research into indoor air quality and occupant comfort in living spaces: housing, schools, offices, leisure spaces.

Potential of Night Ventilative Cooling Strategies in Office Buildings in Spain - Comfort Analysis

Night ventilation has been applied successfully to many passively-cooled or low-energy office buildings. This paper analyses the thermal comfort achievable in office buildings in Spain according to European standard EN 15251:2007. Furthermore, the comfort level is evaluated using the Degree Hours (DH) criteria and the maximum indoor temperature.

Considerations for occupant behaviour modelling in early design stages

This paper presents an ideal and worst case scenario approach for occupancy modelling in early design stages which can be used in building simulation. It defines the range of impact that occupant behaviour can have on comfort and energy performance in buildings, and can thus contribute to the decision making of architectural projects in early design stages.  

Neuron fire rates simulations of cold thermal sensations validated by measurements

Thermal comfort, determined by the influence of the indoor environmental parameters on thermal sensation, is regarded as an important indicator of human wellbeing and health. Neurophysiological mechanisms are responsible for thermal sensation. Models of thermal sensation could be very useful in design of new high performance buildings. Humans do not sense temperature directly. Temperature information is coded into the firing rate of temperature sensitive neurons (thermoreceptors). Human skin contains two types of thermoreceptors “cold” or “warm” sensitive.

A holistic approach to comfort in offices

In the field of building design a rather conservative culture dominates: during the design process, standards are used to achieve physiological comfort. Physiological comfort is a necessity in order to achieve psychological comfort and eventually occupant satisfaction and overall wellbeing. To achieve occupant satisfaction and wellbeing, physiological comfort as well as psychological comfort have to be met.

A coupled summer thermal comfort and indoor air quality model of urban high-rise housing

The synergistic effects between summertime ventilation behaviour, indoor temperature and air pollutant concentration in relation to energy retrofit and climate change have been under-investigated to date. This paper explores such interactions in a social housing setting. The case study flat is located on a mid-floor of a high-rise council tower block in central London. Dwellings of this type are likely to be occupied by vulnerable individuals (elderly people or people suffering from ill health or mobility impairment).

bSol : A straightforward approach to optimize building comfort and energy consumption in early design process.

The software bSol addresses to the professionals (engineers and architects) eager to optimize the parameters of a building project according to the local environment.

Towards a digital representation of physical phenomena to assess comfort in future environments

This paper presents the concept and a test implementation of a digital representation of the physical world designed to assess comfort quality in future environments. An integrated set of physical phenomena is modeled three-dimensionally to investigate the dynamic behavior of design objects holistically. The formulation supports the integration of computational simulation in the performance-based design process. It employs the principles of geometrical and physical selfcontainedness to avoid that complex geometrical and physical circumstances have to be specified at design time.

Pages