This paper, the first of two, presents a conceptual model of moisture concentrations in a building cavity. The model is comprehensive and general considering air infiltration, vapour diffusion and material hygroscopicity under non-steady state conditions. The resulting linearised coupled differential equations are analytically solved to study the case of long term cavity moisture behaviour. Dimensionless parameters and algebraic formulae are presented describing all important moisture performance parameters for a non-condensing cavity.
Evidence of the importance of air infiltration in moisture control in building structures has been steadily accumulating. A general model of moisture behaviour in structures has been built up including for the effects of cavity air leakage, for the hygroscopic behaviour of timber, for the effects of condensation and various geometric factors.
As more component leakage test data become available, all available data has been merged using the orifice flow equation for a standard pressure differential of 50 Pa existing across the component. All component leakage areas are added to pro