Ventilation and air infiltration in relation to the indoor air quality and energy consumption of typical Polish buildings.

The theoretical and experimental study of heat losses and energy consumption and its influence on the air quality in buildings has been undertaken by the Silesian Technical University since 1980. The heat consumption of buildings isinfluenced by the thermal insulation of buildings components, airtightness of these components and the types of ventilation systems. Simultaneously, the thermal comfort and also air quality is influenced by the modern building material and different types of buildings.

On flow in narrow slots applied to infiltration.

The normally used equation for calculation of infiltration flow rates into a house is a power law of which the exponent n is normally assumed to be 0.66 but sometimes values of 0.5 or even 1 can be seen in the literature. In this paper the constant n is calculated assuming a non fully developed infiltration flow. The constant n will for this assumption take values between 0.67 and 0.77 if the slots where the flow takes place are long enough to get a flow close to a developed one.

Estimation of rate of air infiltration based on full-scale wind pressure measurements.

Natural and forced ventilation are directly and indirectly influenced by the pressure distribution around a building. Results of full-scale pressure measurements on a typical Swedish timber house are presented. The rate of air infiltration has been calculated by employing the values obtained from full-scale pressure distribution, air leakage characteristics and temperature differences. The results are compared with the actual ventilation obtained from tracer gas measurements.

Energy aspects of the air movement formation in ventilated rooms. Energetyczne aspekty ksztaltowania ruchu powietrza w wentylowanych pomieszczeniach.

Aerodynamic phenomena affecting the ventilation process, such as aerodynamic mixing, generation of secondary and slightly turbulent flows, roof contours, infiltration and convection and their connection with geometric parameters of the object and energy expenditure for ventilation are analysed.

Parameters affecting air leakage in East Tennessee homes.

A major pathway for loss of conditioned air in East Tennessee homes with externally located heating, ventilation, and air-conditioning (HVAC) systems is leakage in the ductwork. The average infiltration rate, as measured by Freon-12 trace

Residential indoor air quality, structural leakage and occupant activities for 50 Wisconsin homes.

As part of an investigation into the influence of a residential weatherization program on indoor air quality and energy efficiency, a multi-pollutant survey of the air inside 50 Wisconsin homes was conducted three times during the heating season

Infiltration and air quality in well-insulated homes - 2. Effect of conservation measures on air exchange and energy use

Air infiltration in two well-insulated houses is being investigated to determine its effect on energy use and indoor air quality. The first paper of this series provides a general perspective on the design. This paper reports on the effect on conservation measures taken, including the installation of an air-to-air heat exchanger, on air exchange and energy use. A third paper presents pollutant measurements and modelling results.

Modified technology in new constructions, and cost effective remedial action in existing structures, to prevent infiltration of soil gas carrying radon

The general principles and mechanism of how soil gas infiltrates and carries radon from the foundation bed and subsoil into buildings are discussed. The Swedish Building Research Council has funded experiments and evaluation of cost effective remedial actions. The work has concerned existing dwellings with high concentration of radon, resulting from infiltrating soil gas and/or exhalation from building materials. A review and evaluation is given of experience and results acquired up to the summer of 1984.

The role of air infiltration in energy conservation.

A reduction of infiltration and ventilation rates by a mere 1% would reduce annual US energy costs by about 300 million dollars. Infiltration and ventilation activities are an important part of the comprehensive energy conservation research policy of the US Department of Energy. The starting point for this policy is an analysis of how energy is used in buildings, starting with an examination of the buildings themselves. Summarizes US research and future activities.

Philosophy and background of the Dutch standard for airtightness of dwellings.

This paper discusses the situation in the Netherlands with respect to air tightness of dwellings and reflects discussions about this in the Dutch Standard Committee on Air Tightness of Buildings. Results of measurements and calculations are given and the considerations of different groups in thediscussion are included. Finally an attempt is made to produce a model for the prediction of air flow rates, infiltration losses and seasonal gas consumption on the basis of air leakage measurements.

Pages