Designing a model-scale experiment to evaluate the impact of steady wind on building air leakage measurements

Since the 1970s, many authors have discussed the impact of poor airtightness on building energy use, indoor air quality, building damage, or noise transmission. Nowadays, because poor airtightness affects significantly the energy performance of buildings, and even more significantly with low-energy targets, many countries include requirements for building airtightness in their national regulations or energy-efficiency programs. Building pressurization tests are increasingly used for compliance checks to energy performance requirements and may result in severe penalties.

CFD modelling of fan pressurization method in buildings – The impact of dynamic wind on airtightness tests

Building airtightness tests have become very common in several countries, either to comply with minimum requirements of regulations or programs, or to justify input values in calculation methods. This raises increasing concerns for the reliability of those tests. Despite the extensive debates about how the building pressurization test standard ISO 9972 should address sources of uncertainties, no change has been implemented. According to the current standard, the zero-flow pressure shall not exceed 5 Pa for the test to be valid.

Overview of model based control strategies for ventilation systems

This overview focuses on model based control strategies for ventilation in nearly zero energy buildings (nZEB) where slower reactions towards disturbances are expected as a result of high insulation and air tightness of the building envelope (Killian and Kozek 2016). Furthermore, internal heat gains have a higher impact in these kind of buildings. In addition, occupancy pattern can be variable (e.g. in office- and school buildings) and HVAC control is consequently more challenging.

Predictive control for an all-air ventilation system in an educational nZEB building

In school and office buildings, the ventilation system has a large contribution to the total energy use. A control strategy that adjusts the operation to the actual demand can significantly reduce the energy use. This is important in rooms with a highly fluctuating occupancy profile, such as classrooms and open offices. However, a standard rule-based control (RBC) strategy is reactive, making the installation 'lag behind' in relation to the demand. As a result, a good indoor climate is not always guaranteed and the actual energy saving potential is lower than predicted.

Model based design of intelligent ventilation concepts

From a product point of view, today’s state-of-the-art ventilation boxes for residential buildings are generally reliable, efficient and silent according to formal European and national product standards. Ongoing development projects are focussing on making the products even better, but because of the maturity level of today’s solutions, breakthrough revolutions should not be expected. 

A case study on residential mixed-mode ventilation using the Ventilation Controls Virtual Test Bed

Mixed-mode ventilation uses intelligent switching between natural and (partly) mechanical ventilation modes to find the best possible balance between indoor air quality, user comfort and energy consumption. It applies demand-control at the level of the operating mode depending on the constraints imposed by the building, its users and its surroundings. Although mixed-mode ventilation is said to have the potential to achieve a comfortable and healthy indoor environment while achieving significant energy savings, it is rarely used in practice.

Using co-simulation between EnergyPlus and CONTAM to develop IAQ and energy-centric demand-controlled ventilation systems

Buildings account for approximately 40 % of energy use in the European Union, as well as in the United States. In light of the European Energy performance of buildings directive, efforts are underway to reduce this energy use by targeting zero or nearly zero energy buildings. In such low energy buildings in cold climates, ventilation to ensure suitable indoor air quality is responsible for half or more of their energy use. The use of heat recovery and demand-controlled ventilation are potential solutions to reduce ventilation-related energy consumption.

Performances of a demand-controlled mechanical supply ventilation system under real conditions: indoor air quality and power distribution for thermal comfort

This study aims to evaluate the performances of a VMI, a demand-controlled mechanical supply ventilation system, in an experimental house, in terms of indoor air quality (IAQ), energy performance and thermal comfort. The positive input ventilation draws fresh air from the outside, filters and preheats or precools it before blowing it every dry rooms. The air circulates through doors’ undercuts and is naturally extracted thanks to exhaust orifices in every wet rooms. A heat exchanger supplied with water from a reversible heat pump is used to preheat or precool the blown air.

Large-scale performance analysis of a smart residential MEV system based on cloud data

This study is a first large-scale analysis of the performance of a cloud connected and smart residential mechanical extract ventilation (MEV) system based on field data. About 350 units were analysed over a period of 4 months from December 2018 up to March 2019, corresponding with the main winter period in Belgium. Half of the units were installed as a smartzone system which means additional mechanical extraction from habitable rooms as bedrooms. 

Individualised Dynamic Model-Based Monitoring of Occupant’s Thermal Comfort for Adaptive HVAC Controlling

Thermal comfort and sensation are important aspects of the building design and indoor climate control as modern man spends most of the day indoors. Conventional indoor climate design and control approaches are based on static thermal comfort/sensation models that views the building occupants as passive recipients of their thermal environment. Assuming that people have relatively constant range of biological comfort requirements, and that the indoor environmental variables should be controlled to conform to that constant range.

Pages