The multi-criterion optimization of building thermal design and control

The design of buildings is a multi-criterion optimization problem, there always being a trade- off to be made between capital expenditure, operating cost, and occupant thermal comfort. This paper investigates the application of a multi-objective genetic algorithm (MOGA) search method in the identification of the optimum pay- off characteristic between the elements of the building design problem. Results are presented for the pay-off characteris- tics between daily energy cost and zone thermal comfort, and for building capital cost and energy cost.

The influence of different courtyard configurations on natural ventilation through low-rise buildings

Natural  ventilation  represents  an  important  design strategy for school buildings in warm humid regions. It is an efficient way to improve students’ thermal comfort and productivity by natural means. Aiming to examine the influence of typical school buildings configuration on natural ventilation patterns, an investigation was conducted varying two important parameters (courtyard width and presence of pilotis) under two wind directions (45° and 90° in relation to the east facade).

The adaptive couling of computacional fluid dynamics with whole-building thermal simulation

A adaptive controller was devised and implemented within the ESP-r simulation program to support the conflation of CFD with dynamic whole-building thermal simulation. This controller manages all interactions between the thermal and CFD modelling domains. It incorporates the latest turbulence modelling advancements applicable for room air flow simulation and possesses a suite of handshak- ing and thermal boundary condition treatments. The controller is based upon a double-pass modelling approach.

Testing and validation of a new building energy simulation program

Formal  independent  testing  has  been  an  integral component in the development of EnergyPlus, a new building energy simulation program. Testing to date has included analytical, comparative, sensitivity, range, and empirical tests. Published test suites which include reference results have been applied as much as possible in order to take advantage of the efforts of others to develop well-defined, reproducible tests.

Sun and winds in a new business district in Tel Aviv

We present the practical application of two models SustArc (Capeluto and Shaviv 1997, 1999) and FLUENT 5.0.2 (1999) to the design of a new business district in Tel Aviv incorporating solar and wind rights. The new business district was designed as a high-density urban area and is located near an old low-rise residential quarter. SustArc was used as a design tool to create the solar envelope that shows the maximum available volume  in which it is possible to build without violating the solar rights of existing residential neighborhood, the main avenues and the pedestrian sidewalks.

Strategies for coupling energy simulation and computacional fluid dynamics programs

Energy  simulation  (ES)  and  computational  fluid dynamics (CFD) can play important roles in building design by providing complementary information about the buildings’ environmental performance. However, separate applications of ES and CFD are usually unable to give an accurate prediction of building performance due to the assumptions involved in the separate calculations. Integration of ES and CFD eliminates many of these assumptions since the information provided by the models is complementary. Several different approaches to integrating ES and CFD are described.

Some experiences with building simulation in Czech construction industry

This  paper  describes  a  new  approach  of  using simulation directly in construction industry in Czech Republic. Building simulation is used by facade manufacturer in order to present the prediction results to investors, architects and other building specialists to generate discussions and create cooperation. This is necessary for optimal design of highly glazed or intelligent buildings. The paper presents examples of three studies where simulation was used to support design in different stages of the project.

SISLEY : an apen tool for transient-state two-dimensional heat transfer

Sisley  is  an  open  software  that  uses  the  volume element method to model two-dimensional heat transfer problems under transient and steady-state conditions. It includes a powerful simulation engine coupled with  a  simple and  interactive  interface. It make it possible to generate dynamic equations of both physical and reduced models. This software is used to model conventional thermal bridges, as well as windows frames heat losses or specific walls (heated floor) and foundation. In this article we present  Sisley  software  trough  a  thermal  bridge application.

 

Simulation of the wind in hot and humid climates cities: evaluation of the natural ventilation potencial of the housing in urban blocks

This work is a multidisciplinary approach of natural ventilation in hot and humid climates. Our aim is the control of thermal comfort in tropical towns. We evaluate the natural ventilation potential of different shapes of the dense housing. We present here the result we obtained in the case of areas in chequered plan of colonial type (fig. 1). We model the quarter and simulate the airflow induced by wind around the buildings using a CFD code. This allows us to calculate the difference of pressure that appears between upwind and downwind sides of each house.

Pages