

1 Air infiltration
2 Effective leakage areas
3 Reductive sealing
4 Regression models
5 Uncertainty propagation
6 Application and best practices

Effective Leakage Areas

The area of a single orifice that would produce the same leakage as the group of leakages it represents at a reference pressure difference

- Typical form of expressing air leakage characteristics
 - building components
 - · whole envelopes

$$ELA = \frac{10q}{3.6} \sqrt{\frac{\rho_0}{2\Delta p}}$$

$$ELA = \frac{10}{3.6} C_{env} \left(\frac{T_0}{T}\right)^{1-n} \left(\frac{\rho_0}{2}\right)^{0.5} \Delta p^{n-0.5}$$

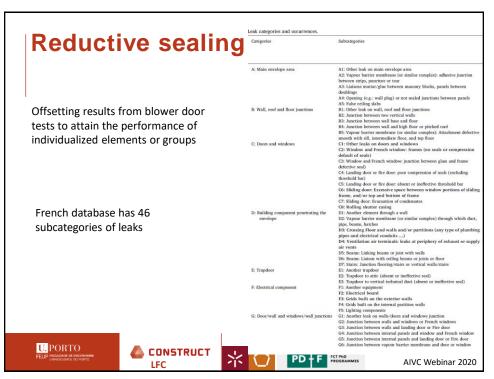
Effective Leakage Areas

- · Available extensively in ASHRAE and AIVC documentation
 - · repeated measurements
 - compilation of laboratory and in situ experiments

Results using ordinary least squares regression in the airflow

No propagation of uncertainty in incremental sealing

	Units	Best Estimate	Mini-	Maxi-		Units (see note)	Best Estimate	Mini-	Maxi-
Ceiling	(see note)	Estimate			Piping/Plumbing/Wiring penetrati		r.sminute		10010
General	cm^2/m^2	1.8	0.79	2.8	Uncaulked	cm ² ea	6	2	24
Drop	cm ² /m ²	0.19	0.046	0.19	Caulked	cm² ea	2	1	24
	em, tm.	0.19	0.046	0.19	Vents	cm, ca	4		- 4
Ceiling penetrations Whole-house fans	cm ² ea	20	1.6	21	Bathroom with damper closed	cm² ea	10	2.5	20
	cm² ea	10	1.5	21	Bathroom with damper crosed Bathroom with damper open	cm² ca	20		22
Recessed lights						cm² ca		6.1	7
Ceiling/Flue vent	cm² ea	0.82	28	31	Dryer with damper		3		
Surface-mounted lights	cm² ea			36	Dryer without damper	cm² ea	15	12	34
Chimney	cm² ea	29	21	36	Kitchen with damper open	cm² ea			72
Crawl space				100.60	Kitchen with damper closed	cm² ea	5	1	7
General (area for exposed wall) 200 mm by 400 mm vents	cm ² /m ² cm ² ea	129	8	17	Kitchen with tight gasket Walls (exterior)	cm² ca	1		
Door frame					Cast-in-place concrete	cm ² /m ²	0.5	0.049	1.8
General	cm² ea	12	2.4	25	Clay brick cavity wall, finished	cm ² /m ²	0.68	0.05	2.3
Masonry, not caulked	cm ² /m ²	5	1.7	5	Precast concrete panel	cm ² /m ²	1.2	0.28	1.65
Masonry, caulked	cm ² /m ²	1	0.3	1	Low-density concrete block,	cm ² /m ²	3.5	1.3	4
Wood, not caulked	cm ² /m ²	1.7	0.6	1.7	unfinished				
Wood, caulked Trim	cm ² /m ² cm ² /lmc	0.3	0.1	0.3	Low-density concrete block, painted or stucco	cm ² /m ²	1.1	0.52	LI
Jamb	cm ² /lmc	8	7	10	High-density concrete block,	cm ² /m ²	0.25		
Threshold	cm ² /lmc	2	1.2	24	unfinished	C111 /110	0.23		
Doors	CHI THUC		1.2	24	Continuous air infiltration barrie	20m2	0.15	0.055	0.21
Attic/crawl space, not	cm² ea	30	10	37	Rigid sheathing	cm ² /m ²	0.35	0.29	0.41
weatherstripped					Window framing	1000			
Attic/crawl space, weatherstripped	cm² ea	18	8	18.5	Masonry, uncaulked	cm ² /m ²	6.5	5.7	10.3
Attic fold down, not	cm2 ea	44	23	86	Masonry, caulked	cm ² /m ²	1.3	1.1	2.1
weatherstripped					Wood, uncaulked	cm ² /m ²	1.7	1.5	2.7
Attic fold down, weatherstripped	cm² ea	22	14	43	Wood, caulked	cm ² /m ²	0.3	0.3	0.5
Attic fold down, with insulated box		4			Windows				
Attic from unconditioned garage	cm² ea	0	0	0	Awning, not weatherstripped	cm ² /m ²	1.6	0.8	2.4
Double, not weatherstripped	cm ² /m ²	11	7	22	Awning, weatherstripped	cm ² /m ²	0.8	0.4	1.2
Double, weatherstripped	cm ² /m ²	8	3	23	Casement, weatherstripped	cm ² /lmc	0.24	0.1	3
Elevator (passenger)	cm² ea	0.26	0.14	0.35	Casement, not weatherstripped	cm ² /Imc	0.28		
General, average	cm ² /lmc	0.31	0.23	0.45	Double horizontal slider, not	cm ² /lmc	1.1	0.019	3.4
Interior (pocket, on top floor)	cm² ea	14			weatherstripped	100/100/20			
Interior (stairs) Mail slot	cm ² /lmc	0.9	0.25	1.5	Double horizontal slider, wood, weatherstripped	cm ² /lmc	0.55	0.15	1.72
Sliding exterior glass patio	cm ² ea	22	3	60	Double horizontal slider.	cm ² /Imc	0.72	0.58	0.8
Sliding exterior glass patio Sliding exterior glass patio	cm²/m²	5.5	0.6	15	aluminum, weatherstripped	em-/lmc	0.72	11.38	0.8
Storm (difference between with	cm² ea		3						122
Storm (difference between with and without)	cm' ea	6	3	6.2	Double-hung, not weatherstrippe	d cm²/lmc	2.5	0.86	6.1
Single not weatherstripped	cm2 en	21	12	51	Double-hung, weatherstripped	cm²/lmc	0.65	0.2	1.9
Single not weatherstringed	cm, va	21	17.	3.6	Deceme-tune with storm not	cmc/line	6.97	12.430	1.7



AIVC Webinar 2020

5

Reductive sealing

Most frequent

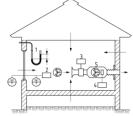
- windows
- doors
- shutters

Most impactful

- · lighting components
- junction between floor and wall
- electrical board
- junction between window and wall
- trapdoors to attics

Leakage type assessment often qualitative – smoke tracer/thermography

Background leakage after initial assessment usually ranges from 45% to 75%



AIVC Webinar 2020

7

Regression models

- temperature-measuring device
- 3 air-flow measuring system
- 4 air-moving equipment
- 5 fan

.. CONSTRUCT

AIVC Webinar 2020

U. PORTO

Regression models

OLS - Ordinary least squares

WLOC – Weighted Line of Organic Correlation

OLS

OLS uncertainty

WLOC uncertainty

q readings:

distance to regression values

q readings: fan accuracy

It readings:

sensors accuracy and resolution

q readings: fan accuracy t readings:

sensors accuracy and resolution

Δp and Δp0 readings:

manometer accuracy and resolution zero-flow approximation

AIVC Webinar 2020

9

Uncertainty propagation

Uncertainty propagation to the ELA

$$u(ELA) = \begin{pmatrix} \left(2.155C_{env}\Delta p^{n-0.5}\left(\frac{T_0}{T}\right)^{1-n}\ln\left(\Delta p\frac{T}{T_0}\right)u(n)\right)^2 + \left(2.155C_{env}\Delta p^{n-0.5}\left(\frac{T_0}{T}\right)^{1-n}u(\ln(C_{env}))\right)^2 + \\ \\ \left(2.155\frac{C_{env}\Delta p^{n-0.5}(n-1)}{T}\left(\frac{T_0}{T}\right)^{1-n}u(T)\right)^2 + \\ \\ 2\left(2.155C_{env}\Delta p^{n-0.5}\left(\frac{T_0}{T}\right)^{1-n}\right)^2\ln\left(\Delta p\frac{T}{T_0}\right)u(n)u(\ln(C_{env}))r(n,\ln(C_{env})) \end{pmatrix}$$

· Offset of uncertainties between sealing steps

$$\mathit{ELA}_{\mathit{step},i} = \mathit{ELA}_{i-1} - \mathit{ELA}_i$$

$$u(ELA_{step,i}) = \sqrt{u(ELA_{i-1})^2 + u(ELA_i)^2}$$

Application and best practices

Smoke tracer provides info for:

- Identification of predominant leaks
- Sealing step sequence

AIVC Webinar 2020

11

Exterior finishings can be a challenge

default mode (DEF)

mechanical ventilation (MEV)

heating and air conditioning elements (HAC)

electrical appliances (ELE)

lighting (LIG)

12 sealing steps 11 leakage path types plumbing (PLU)

wall/wall joints (WWJ)

wall/floor joints (WFJ)

wall/roof joints (WRJ)

wall/openings joints (WOJ)

openings (OPE)

entrance door (ENT)

AIVC Webinar 2020

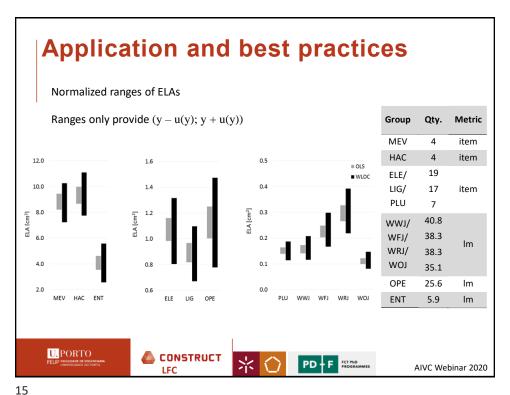
13

Application and best practices

- Significant dispersion of air flow rates between leakage paths
- WLOC provides higher calculated uncertainties in the airflow rates
- No leakage path type exceeded 18% of the total air change rate
- On average, 2.6 and 1.7 times greater than OLS and OLSu

Average effective leakage area uncertainty

Pressure	OLS	OLSu	WLOC
difference	[%]	[%]	[%]
4	9.9	18.8	27.5



10

Application and best practices

- Less impacting air leakage types should be assessed first
 Minimize uncertainty accumulation effect in earlier steps
- Measure similar types of air leakage paths in a consecutive order
 If adjoining is needed for subsequent data treatment
- WLOC should be preferred since it considers the greatest number of error sources
 Even though a greater variability will result from its application

Application and best practices

Effective Leakage Areas are used primarily for input in airflow models

Risk assessment on health-related issues:

Energy relevant aspects:

minimum air renovations

· ranges of heating and

· comfort concerns

cooling loads

Support decision on intervention scenarios by:

- Cost
- · Labour
- Invasiveness
- Time

With truer uncertainties

Most adequate leakage paths for intervention

AIVC Webinar 2020

17

