Assessment of long-term and mid-term building airtightness durability: field study of 61 French low energy single-family dwellings

Bassam Moujalled*, Sylvain Berthault, Andrés Litvak, Valérie Leprince, and Gilles Frances

*bassam.moujalled@cerema.fr

Introduction

- The French research project DURABILITAIR (2016-2019)
 - to improve our knowledge on the variation of buildings airtightness through onsite measurement campaigns (Task 2) and accelerated ageing in laboratory controlled conditions (Task 3)
- Literature review (task 1) showed an important evolution over time of the air permeability in real buildings, especially in the first 3 years
- The second task of the project deals with the quantification and qualification of the durability of building airtightness of single detached houses through field measurement at:
 - mid-term scale (MT)
 - long-term scale (LT)
Methodology

- MT and LT measurement campaigns based on two samples of single-detached low-energy dwellings:
 - All dwellings measured upon completion [measurement n0] and treatment of airtightness well known
- MT measurement campaign (1-3 years):
 - Sample of 30 new single-detached dwellings
 - The airtightness of each dwelling was measured once per year over the 3-year period [measurements n1, n2 & n3]
 - Five dwellings were measured twice per year (impact of seasonal variations)
 - For six dwellings, the airtightness of an installed window was measured once per year over the 3-year period

- LT measurement campaign (5-10 years):
 - Sample of 31 single-detached dwellings constructed during the last 10 years
 - The airtightness of each dwelling was measured once [measurement nx]
- Measurement protocol based on ISO 9972 and its French implementation guide, with additional requirements:
 - Measurements to be performed under the same conditions as the measurement upon completion both in pressurization and depressurization
 - Detailed qualitative leakage detection to be performed
 - Questionnaires for occupants to be filled at each measurement regarding the action of the occupants on building envelope
RESULTS

Characteristics of buildings

Year of construction

Average timespan between measurements

MT sample:
- \(n0-n1 : 1.7 \text{ yr (from 1.1 to 2.7)} \)
- \(n1-n2 : 0.7 \text{ yr (from 0.4 to 1.2)} \)
- \(n2-n3 : 0.9 \text{ yr (from 0.4 to 1.7)} \)
- \(n0-n3 : 3.4 \text{ yr (from 2.8 to 4.2)} \)

LT sample:
- \(n0-nx : 4.6 \text{ yr (from 2.6 to 8)} \)
Characteristics of buildings

Type of material & air barrier

<table>
<thead>
<tr>
<th>Material</th>
<th>Air barrier-A</th>
<th>Air barrier-B</th>
<th>Air barrier-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Brick</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wood</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

MT sample:
Masonry walls with interior insulation: Airtightness by plasterboards and mastics at the inside facing of the walls (C)

LT sample:
Masonry walls with interior insulation: Airtightness by coating on the masonry (B) or by plasterboards and mastics at the inside facing of the walls (C)

Wood frame houses with insulation between studs: Airtightness by the vapour barrier (A)

Evolution in q_{50}

MT sample

Evolution of mean q_{50}:

- n_0-n_1: +58.9 m3.h$^{-1}$/ +18%
 - $(p$-value = 0.037)
 - Timespan = 1.7 years

- n_0-n_2: +57.2 m3.h$^{-1}$/ +18%
 - $(p$-value = 0.026)
 - Timespan = 2.7 years

- n_0-n_3: +60.4 m3.h$^{-1}$/ +19%
 - $(p$-value = 0.037)
 - Timespan = 3.4 years
Evolution in q_{50}

LT sample

Evolution of mean q_{50}:

n_0-n_x: $+67.7 \, m^3\cdot h^{-1}/ +20\%$
(p-value $= 0.002$)
Timespan = 4.6 years

Evolution in q_{50} vs. Timespan

MT & LT samples

No correlation between the evolution in q_{50} and the age of the houses for both MT and LT samples.
Analysis of explanatory factors

MT sample

Δq_{50} < -50 m³·h⁻¹
5 houses

-50 < Δq_{50} < 50
13 houses

+50 < Δq_{50} < 150
6 houses

Δq_{50} > +150 m³·h⁻¹
5 houses

Analysis of explanatory factors

Nb. Of levels (MT)

2-storey houses seems to deteriorate more than 1-storey houses
→ Structural movement?

1-storey (20)
2-storey (10)
Analysis of explanatory factors

Type of roof (MT)

<table>
<thead>
<tr>
<th>MT sample</th>
<th>Δq_{50} < 50 m³·h⁻¹</th>
<th>Δq_{50} > 50 m³·h⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT sample</td>
<td>-50 < Δq_{50} < 50</td>
<td>+50 < Δq_{50} > 150</td>
</tr>
<tr>
<td>5 houses</td>
<td>13 houses</td>
<td>6 houses</td>
</tr>
</tbody>
</table>

2 exposed wood frame houses with same type of air barrier: +20% vs +180% → conditions of implementation?

- Light frame (20)
- Traditional wood frame (8)
- Exposed Traditional wood frame (2)

Type of material (LT)

<table>
<thead>
<tr>
<th>LT sample</th>
<th>Δq_{50} < 50 m³·h⁻¹</th>
<th>Δq_{50} > 150 m³·h⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood frame (6)</td>
<td>5 houses</td>
<td>6 houses</td>
</tr>
<tr>
<td>Hollow bricks (21)</td>
<td>8 houses</td>
<td>11 houses</td>
</tr>
<tr>
<td>Concrete blocks (3)</td>
<td>13 houses</td>
<td>5 houses</td>
</tr>
</tbody>
</table>

Wood houses tend to stabilise or even improve over years → expansion of wood with humidity?

- Wood frame (6)
- Hollow bricks (21)
- Concrete blocks (3)
Evolution of leakages
MT sample: n3-n0

Increase of leakages C, F, D & G
NO CORRELATION with the evolution in q_{50}

CONCLUSIONS
Conclusions

- **Same evolution of airtightness at mid and long term**
 - Similar increase in q_{50} at mid and long-term (+18% and +20% respectively)
 - No correlation with the age of construction
 - Deterioration mainly during the first 2 years and then stabilisation

- **Significant increase in the number of leakages for:**
 - Doors and windows, electrical components, penetrations through envelope & junctions between walls and windows
 - But no correlation with the variation in q_{50}

Conclusions

- **Explanatory factors of the evolution of the airtightness:**
 - No impact for constructor, type of air-barrier, type of floor, type of heating, specific HVAC equipment
 - No impact for seasonal variation
 - The airtightness of wood houses tend to stabilise or even improve over years
 - 2-storey houses seems to deteriorate more than 1-storey ones
 - Studied factors unable to explain the variations:
 - Other factors, such as conditions of implementation of the air-barrier, need to be explored
Thanks...

Projet DURABILIT’AIR
https://www.durabilitair.com/

Lauréat de l’Appel à Projets de Recherche 2015 « vers des Bâtiments Responsables à l’Horizon 2020 »

avec le financement de

40th AIVC - 8th TightVent & 6th Venticool Conference
15-16 October 2019 | Ghent, Belgium