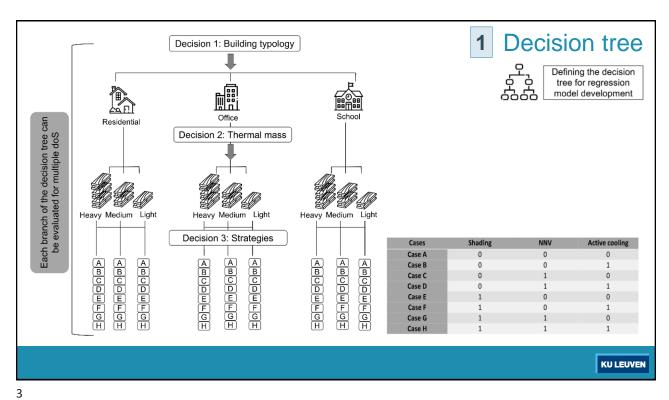


A novel indicator to assess thermal resilience of buildings to overheating

Douaa Al Assaad¹, Abantika Sengupta², Marijke Steeman³, Hilde Breesch¹

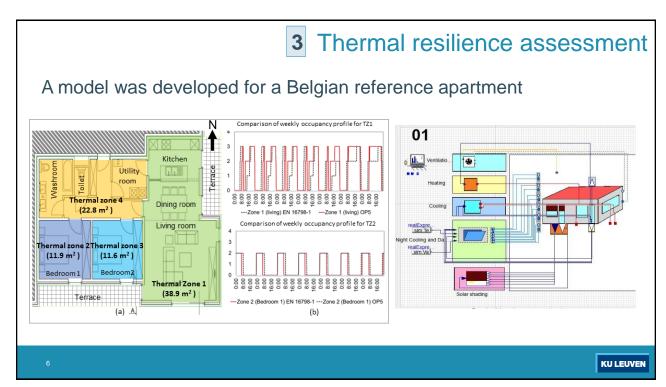

¹Building Physics and Sustainable Design, KU Leuven, Campus Gent, Belgium

1

²Research Center En Aeronautique, Cenaero, Belgium

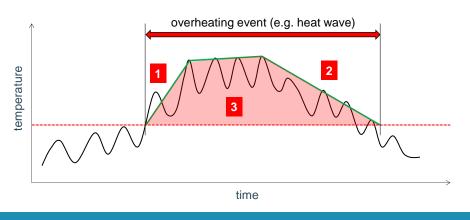
³Department of Architecture and Urban Planning, Ghent University, Belgium

2	Parameters +	ranges
---	--------------	--------


Category	Description/parameter	Range
	Building Orientation (°)	0-360
	U-value of external wall (W/m².K)	0.10-0.30
Building	WWR (%)	25-80
parameters	U-value (W/m².K) and associated g-value (-) of glazing	U-value (0.6-1.0) W/m ² .K
	glazing	g-value (0.4-0.6)
	Air tightness (ACH) n50 (1/h)	0.6-3
Solar shading	External shading Control (ShadingONOFF)	0-1
Solal Shauling	Shading Threshold (W/m²)	100-300
Natural night	Effective window opening area (% of floor area)	1- 8
ventilation	Night Cooling control (NNVOnOFF)	0-1
Cooling avetem	Cooling set point (°C)	24 - 28
Cooling system	Cooling capacity (W/m²)	0-40

2 Parameters + ranges (continued)

Parameter	rs	Office	Residential	School
each	Occupant density (m²/pers)	10	28.3	5.4
for	Occupancy profile	9h-18h	24*7	8h-17h
Parameters that vary for each building typology		Weekdays	(at least 1 occupant during daytime)	Weekdays
	Ventilation rate (m ³ /h) per person	30-54	30	30-54
	Internal gains-appliances (W/m²)	12	3	8


5

5

3 Thermal resilience assessment

Resilience response on health = rate of change of temperature (absorption, recovery) + cumulative impact

KU LEUVEN

7

3 Thermal resilience assessment

Degree of Impact = standard effective temperature (SET) Degree-hours (SET-Dh)

What is SET?

"Temperature of imaginary environment at RH = 50%, v < 0.1 m/s & total heat loss from the skin of imaginary occupant (1.0 MET & 0.6 clo) = person in actual environment, with actual clothing and activity level"

$$SET_{alert} = 28$$
°C

Resilience class	SET-Dh range	Resilience rating
Class I	SET-Dh < (117 ± 30)	Best
Class II	(117 ± 30) < SET-Dh < (230 ± 42)	Good
Class III	SET-Dh > (230 ± 42)	Worse

Source: Laoudi et al. (2020)

4 Multiple linear regression

Thermal resilience indicator (TRI_{SET-Dh})

Vent

Glazing

Walls

Air-tightness Orientation

Case A (without strategies: shading, night cooling, cooling)

$$TRI_{case A} = 37.05 - 0.01 \times Orientation + 3.66 \times WWR - 4.7 \times n_{50} - 75.79 \times U_{wall} + 36.12$$

$$0 - 4 \qquad 91 - 293 \qquad 28 - 51 \qquad 8 - 22 \qquad 21 - 36$$

In newly-built buildings, where there is no availability of installing strategies, the first parameter to control is the WWR as it will have the most impact on overheating

KU LEUVEN

10

Case H (with shading, night cooling, cooling)

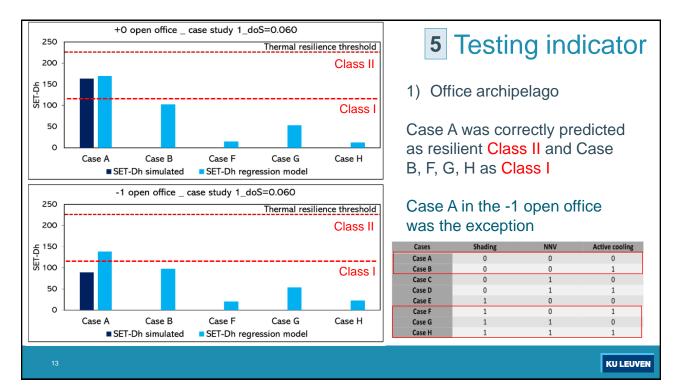
$$TRI_{case H} = -63.90 + 0.01 \times Orientation + 1.38 \times WWR - 0.51 \times n_{50} + 0.15$$

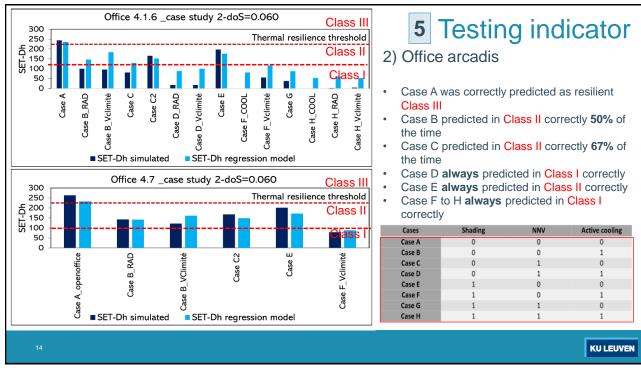
$$\times Shading threshold 15 - 45$$

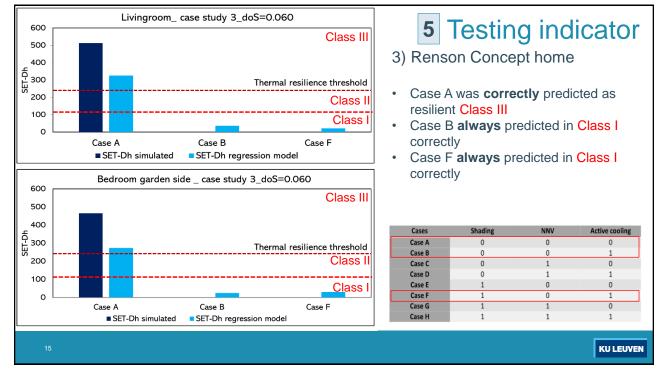
$$-2.70 \times 4_{win,open} + 0.81 \times 7_{set,cool} - 1.37 \times 0_{cool} - 8.71 \times 0_{wall} + 24.62 \times 0_{glazing} = 1.37 \times 0_{set,cool} - 1.37 \times 0_{set,cool} = 1.37$$

In newly-built buildings, where there is availability of installing strategies, the WWR is an important factor, but should be given as much importance as the system's cooling capacity and optimizing the deployment of shading

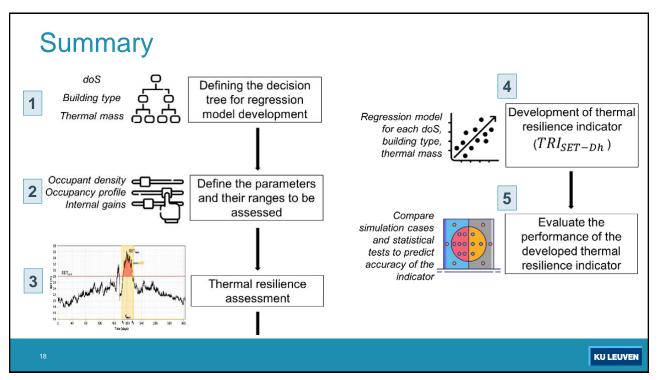
5 Testing indicator


Case studies in the ReCOver++ project:


- · Office archipelago
- Office arcadis
- Renson Concept home


Comparison of Predicted TRI_{SET-Dh} vs. Simulated SET-Dh

12


5 Testing indicator

Resilience class	SET-Dh range	Resilience rating	Prediction rate accuracy of indicator
Class I	SET-Dh < (117 ± 30)	Best	84%
Class II	(117 ± 30) < SET-Dh < (230 ± 42)	Good	100%
Class III	$SET-Dh > (230 \pm 42)$	Worse	100%

16% should have been predicted Class I were predicted as Class II

16

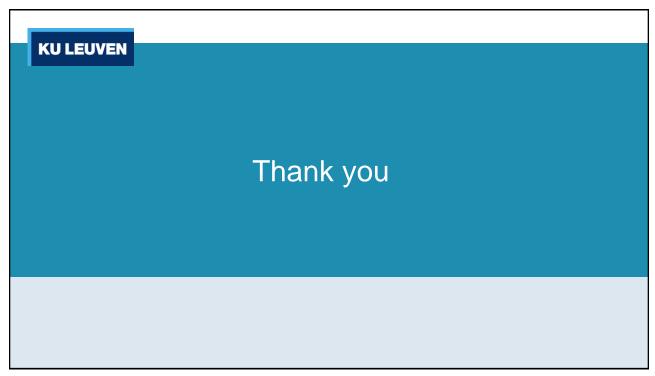
16

Scope, limitations of the indicator and future directions

- Applicable to newly built buildings in Belgium & renovations with already acceptable insulation
- Applicable to heat-waves, should be tested for other disruptive events (power outages, excessive occupancy) and compared to more simulation cases
- More parameters can be tested for more specific design implications (thermal mass, shading parameters, cooling system parameters)
- Dose response and long-term is not considered
- · Human behavioral and physiological adaptations are not considered
- Absorptivity and recovery rates should be considered in the future: more understanding is needed on human body's response to heat

19

19


KU LEUVEN

References

- Laoudi et al. 2020: https://doi.org/10.1016/j.enbuild.2020.110360
- Annex 80 paper: simulation of different resilient strategies in different climates: https://doi.org/10.1016/j.buildenv.2025.112698
- Sensitivity analysis paper: https://doi.org/10.1016/j.buildenv.2024.112031
- Publication coming soon on the indicator!

Faculty, department, unit

