Temperature Zoning in Highly-Insulated Buildings
Colder Bedrooms in Winter with Warm Living Rooms

Laurent Georges and Vegard Heide
Energy and Process Engineering Department, NTNU

Urban Home Ventilation, AIVC seminar, May 2020, Norway

Need for Colder Bedrooms in Norway (1)

• Without considering a specific building energy performance

• Survey (Bjorvatn et al. 2017)
 – 1001 Norwegians selected randomly
 – 70% with bedroom temperature < 18°C
 – Many with bedroom temperature < 12°C
Need for Colder Bedrooms in Norway (2)

• Without considering a specific building energy performance

• Survey (Bjorvatn et al. 2017)
 – 1001 Norwegians selected randomly
 – Many keep bedroom windows always open, especially with age above 45

Temperature Zoning in nZEB (1)

• Limited temperature zoning in highly-insulated building envelopes
 – Highly-insulated external walls and high-performance windows
 – Centralized one-zone balanced mechanical ventilation with efficient heat recovery

Single temperature level for supply ventilation air

Pictures from Berge et al., Building and Environment 2016
Temperature Zoning in nZEB (2)

- Influence of building construction mode
 - Partition walls insulated in lightweight constructions
 - Positive effect on temperature zoning
 - Many lightweight wooden constructions in Norway

- \(U \approx 0.33 \text{ W/m}^2.K \)
 - \(U \approx 3.2 \text{ W/m}^2.K \)

Pictures from SINTEF Byggforskserien

Temperature Zoning in nZEB (3)

- Experience of indoor thermal environment in Norwegian passive houses
 - Based on questionnaires and field measurements
 - \(\approx 100 \) dwellings (Berge et al. 2016, Thomsen et al. 2017)

- Regarding bedrooms
 - Many occupants want colder bedrooms (\(< 16°C\))
 - \(\approx 50\% \) occupants open bedroom windows several hours every day during winter time
 - The main motivation is temperature control not IAQ
 - Occupants do not control the supply ventilation air temperature correctly to get colder bedrooms

- Regarding living areas
 - Desired indoor temperature is often between 22°C and 24°C
Temperature Zoning: example apartment (1)

- Two identical apartments from *Miljøbyen Granåsen* project in Trondheim

<table>
<thead>
<tr>
<th>Thermal property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U external walls</td>
<td>0.17 W/m².K</td>
</tr>
<tr>
<td>U wall to atrium</td>
<td>0.16 W/m².K</td>
</tr>
<tr>
<td>U between flats</td>
<td>0.25 W/m².K</td>
</tr>
<tr>
<td>U internal walls</td>
<td>0.49 W/m².K</td>
</tr>
<tr>
<td>Thermal bridges</td>
<td>0.02 W/m².K</td>
</tr>
<tr>
<td>Infiltration (design)</td>
<td>0.6 ach at 50 Pa</td>
</tr>
<tr>
<td>Ventilation CAV</td>
<td>1.5 m³/m².h 85% rated efficiency</td>
</tr>
</tbody>
</table>

Georges et al. 2016

Temperature Zoning: example apartment (2)

- Measurement during two weeks in a passive house apartment

Georges et al. 2016
Is it due to control?

- Based on calibrated dynamic simulations
 - Multi-zone simulations in IDA ICE with embedded ventilation network

![Graph showing operative temperature over percentage of nighttime during heating season.](image1)

- Based on measurements and simulations
 - Apartment block, terraced and detached houses at Norwegian passive house level

![Graph showing space-heating needs and energy efficiency.](image2)

Conclusions for Lightweight Construction

- Based on measurements and simulations
 - Need a heat sink
 - Standard one-zone ventilation
 - Alternative ventilation strategy?
Temperature Zoning: research question

- Research showed that
 - Large temperature zoning leads to significant increase of space-heating needs (ΔE_{SH})
 - Control alone cannot decrease bedroom temperature without large ΔE_{SH}
 - Something should be changed in the building concept, like the ventilation strategy

- How to reduce ΔE_{SH} with large temperature zoning?
 1. Relative importance of ventilation and heat conduction in partition walls?
 2. How alternative ventilation strategies would improve energy efficiency?

Framework of Analysis

- Steady-state heat transfer (P) from heated to unheated rooms

$$P = U_p (T_{set,SH} - T_{bed}) + \dot{V}_2 C_p (T_{set,SH} - T_{bed})$$

- When open bedroom window, nothing changes for heated zone except

$$T_{bed,open} < T_{bed,closed}$$

$$P_{open} > P_{closed}$$

Georges et al. 2019
Alternative ventilation strategies

- To reduce the ventilation contribution on ΔE

![Diagram of ventilation strategies]

- V_2 switched off if bedroom with windows opened
- Balanced ventilation in bedrooms
- Decentralized ventilation in bedrooms and heated zones

Simulation Case Study

- Detached Passive House
 - 173 m² located in Oslo
 - With different construction modes (lightweight to heavy)
 - Simulated in IDA-ICE with embedded ventilation network
 - CAV with pre-accepted airflow rates from TEK17 adapted for each ventilation strategy

![Diagram of Cascade ventilation]
Steady-State Analysis

Setup
- Outdoor temperature selected to give typical temperature zoning
- Heavy-weight (CM1) and Lightweight (CM5) constructions
- Two different set-point temperature in living areas (21 and 24°C)
- Increase of space-heating needs analyzed ΔE_{SH} due to window opening in bedrooms

Conclusions (1)
- Heat conduction > ventilation effect in heavy-weight buildings (CM1)
- Heat conduction \approx ventilation effect in lightweight construction (CM5)

Steady-State Analysis

Conclusions (2)
- Moderate reduction of ventilation effect for strategies (B) and (C) compared to (A)
- No ventilation effect with strategy (D)
- Heat conduction part left almost unchanged between A, B, C and D
Yearly Dynamic Simulation

- Setup
 - Lightweight construction (CM5)
 - Set-point temperature in living area of 24°C
 - Compare different strategies for control

- Conclusion with closed bedroom windows
 - Higher ventilation airflow rates in (C and D) compared to A (from pre-accepted building code TEK17)
 - Slightly higher space-heating needs without cascade ventilation (C and D)

Yearly Dynamic Simulation

- Conclusions open bedroom windows
 - Always an increase of space-heating needs
 - Slightly lower increase for (B) and (C) than (A)
 - Lower increase for decentralized (D) than (A)
Conclusions (1)

• Highly-insulated building with one-zone balanced mechanical ventilation

• Need to improve energy efficiency with large temperature zoning (> 3°C)
 – Simulations show that it is not a question of control
 – Need to change the building concept

• Important remarks
 – Buffer zone with intermediate temperature level effective for zoning
 – Results can be very different with less insulated partition walls (e.g. heavy-weight buildings)

Conclusions (2)

• Regarding the increase of space-heating needs with large zoning (ΔE_{SH})

• Question 1:
 – Heat conduction dominant in heavyweight buildings (non-insulated partition walls)
 – Effect heat conduction and ventilation have the same magnitude for lightweight buildings
 – Ventilation strategy cannot solve the problem alone

• Question 2:
 – Ventilation contribution can be moderately reduced by shutting down supply air in bedrooms of mechanical ventilation when bedroom windows are opened (strategy B)
 – Ventilation contribution can be moderately reduced by balancing airflows in bedrooms (strategy C, here still with a one single supply air temperature)
 – Ventilation contribution can be significantly reduced by decentralized ventilation (D)
References

1. B. Bjorvatn et al., *Age and sex differences in bedroom habits and bedroom preferences*, Sleep Medicine, 2017 (32)
10. Selvnes, E., *Thermal zoning during winter in super-insulated residential buildings* Master thesis at Energy and Process Engineering Department, Norwegian University of Science and Technology (NTNU), 2017

Thank you for your attention!

Laurent Georges and Vegard Heide
laurent.georges@ntnu.no, vegard.heide@ntnu.no

Urban Home Ventilation, AIVC seminar, May 2020, Norway
Case Study

- Control strategies changing set-points for
 - Heated zones, AHU heating coil, bedrooms, window and door opening

<table>
<thead>
<tr>
<th>Cases</th>
<th>Living areas</th>
<th>AHU</th>
<th>Bedrooms</th>
<th>Windows Schedule</th>
<th>Windows T_set,win</th>
<th>Door Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21 or 24°C</td>
<td>T_set,SH-3</td>
<td>T_set,SH</td>
<td>Closed</td>
<td>-</td>
<td>Closed</td>
</tr>
<tr>
<td>2</td>
<td>21 or 24°C</td>
<td>T_set,SH-3</td>
<td>None</td>
<td>Closed</td>
<td>-</td>
<td>Closed</td>
</tr>
<tr>
<td>3</td>
<td>21 or 24°C</td>
<td>16°C</td>
<td>None</td>
<td>Closed</td>
<td>-</td>
<td>Closed</td>
</tr>
<tr>
<td>4</td>
<td>21 or 24°C</td>
<td>14°C</td>
<td>None</td>
<td>Closed</td>
<td>-</td>
<td>Closed</td>
</tr>
<tr>
<td>5</td>
<td>21 or 24°C</td>
<td>T_set,SH-3</td>
<td>None</td>
<td>Open (Night)</td>
<td>16°C</td>
<td>Closed</td>
</tr>
<tr>
<td>6</td>
<td>21 or 24°C</td>
<td>16°C</td>
<td>None</td>
<td>Open (Night)</td>
<td>16°C</td>
<td>Closed</td>
</tr>
<tr>
<td>7</td>
<td>21 or 24°C</td>
<td>14°C</td>
<td>None</td>
<td>Open (Night)</td>
<td>16°C</td>
<td>Closed</td>
</tr>
<tr>
<td>8</td>
<td>21 or 24°C</td>
<td>T_set,SH-3</td>
<td>None</td>
<td>Open (Night)</td>
<td>16°C</td>
<td>Open (Day)</td>
</tr>
</tbody>
</table>

Nominal Ventilation Airflow Rates

- Pre-accepted values from building code TEK17, leading design criteria:
 - Supply airflow in bedrooms in cascade ventilation
 - Exhaust airflow in “wet” rooms without cascade ventilation

<p>| Table 2. Ventilation airflow rates for the different ventilation strategies [12]. |</p>
<table>
<thead>
<tr>
<th>Zone</th>
<th>Room</th>
<th>Supply [m³/h]</th>
<th>Return [m³/h]</th>
<th>Without cascade** Supply [m³/h]</th>
<th>Return [m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kitchen and Living</td>
<td>104</td>
<td>40</td>
<td>126</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Stairs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Technical/Laundry</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Bathroom 1st floor</td>
<td>0</td>
<td>64</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Bathroom 2nd floor</td>
<td>0</td>
<td>64</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>Bedroom SE</td>
<td>52</td>
<td>0</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>Corridor 2nd floor</td>
<td>0*</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Bedroom SW</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Bedroom NW</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

* In strategy (b), this airflow is 104 m³/h if the supply ventilation air in bedrooms is stopped.
** This corresponds to the strategy (c) and decentralized ventilation (d).