

Assessment of long-term and mid-term building airtightness durability: field study of 61 French low energy single-family dwellings

Bassam Moujalled*, Sylvain Berthault, Andrés Litvak, Valérie Leprince, and Gilles Frances

*bassam.moujalled@cerema.fr

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

1

Introduction

- The French research project DURABILITAIR (2016-2019)
 - ✓ to improve our knowledge on the variation of buildings airtightness through
 onsite measurement campaigns (Task 2) and accelerated ageing in
 laboratory controlled conditions (Task 3)
- Literature review (task 1) showed an important evolution over time of the air permeability in real buildings, especially in the first 3 years
- The second task of the project deals with the quantification and qualification of the durability of building airtightness of single detached houses through field measurement at:
 - √ mid-term scale (MT)
 - √ long-term scale (LT)

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

Methodology

- MT and LT measurement campaigns based on two samples of singledetached low-energy dwellings:
 - ✓ All dwellings measured upon completion [measurement n0] and treatment of airtightness well known
- MT measurement campaign (1-3 years):
 - √ Sample of 30 new single-detached dwellings
 - ✓ The airtightness of each dwelling was measured once per year over the 3year period [measurements n1, n2 & n3]
 - ✓ Five dwellings were measured twice per year (impact of seasonal variations)
 - ✓ For six dwellings, the airtightness of an installed window was measured once per year over the 3-year period

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

-

3

Methodology

- LT measurement campaign (5-10 years):
 - ✓ Sample of 31 single-detached dwellings constructed during the last 10 years
 - ✓ The airtightness of each dwelling was measured once [measurement nx]
- Measurement protocol based on ISO 9972 and its French implementation guide, with additional requirements:
 - \checkmark Measurements to be performed under the same conditions as the measurement upon completion n_0 both in pressurization and depressurization
 - ✓ Detailed qualitative leakage detection to be performed
 - ✓ Questionnaires for occupants to be filled at each measurement regarding the action of the occupants on building envelope

***** Cerema

RESULTS

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

Characteristics of buildings

Year of construction

Average timespan between measurements

MT sample:

n0-n1: 1.7 yr (from 1.1 to 2.7) n1-n2: 0.7 yr (from 0.4 to 1.2) n2-n3: 0.9 yr (from 0.4 to 1.7) n0-n3: 3.4 yr (from 2.8 to 4.2)

LT sample:

n0-nx: 4.6 yr (from 2.6 to 8)

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

(

Characteristics of buildings

Type of material & air barrier

MT sample:

Masonry walls with interior insulation: Airtightness by plasterboards and mastics at the inside facing of the walls (C)

LT sample:

Masonry walls with interior insulation: Airtightness by coating on the masonry (B) or by plasterboards and mastics at the inside facing of the walls (C)

Wood frame houses with insulation between studs: Airtightness by the vapour barrier (A)

AIVC Webinar - Durability of building airtightness: Assessment through field measurements | 30 January 2020

Evolution in q₅₀ MT sample

Evolution of mean q_{50} :

n0-n1: +58.9 m³.h⁻¹ / +18% (p-value = 0.037)Timespan = 1.7 years

n0-n2: +57.2 m³.h⁻¹ / +18% (p-value = 0.026)Timespan = 2.7 years

n0-n3: +60.4 m³.h⁻¹ / +19% (p-value = 0.037)Timespan = 3.4 years

AIVC Webinar - Durability of building airtightness: Assessment through field measurements | 30 January 2020

1-Press. 2-Depress.

3-Average

Evolution in q₅₀ vs. Timespan MT & LT samples

• MT_q50_nx-n0 • LT_q50_nx-n0

+700
+600
+500

No correlation between the evolution in q_{50} and the age of the houses for both MT and LT samples

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

Conclusions

- Same evolution of airtightness at mid and long term
 - ✓ Similar increase in q₅₀ at mid and long-term (+18% and +20% respectively)
 - ✓ No correlation with the age of construction
 - ✓ Deterioration mainly during the first 2 years and then stabilisation
- Significant increase in the number of leakages for:
 - ✓ Doors and windows, electrical components, penetrations through envelope & junctions between walls and windows
 - ✓ But no correlation with the variation in q_{50}

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

1

17

Conclusions

- Explanatory factors of the evolution of the airtightness:
 - ✓ No impact for constructor, type of air-barrier, type of floor, type of heating, specific HVAC equipment
 - ✓ No impact for seasonal variation
 - ✓ The airtightness of wood houses tend to stabilise or even improve over years
 - ✓ 2-storey houses seems to deteriorate more than 1-storey ones
 - ✓ Studied factors unable to explain the variations:
 - ✓ Other factors, such as conditions of implementation of the airbarrier, need to be explored

AIVC Webinar – Durability of building airtightness: Assessment through field measurements | 30 January 2020

Thanks...

Projet DURABILIT'AIR « vers des Bâtiments Responsables à l'Horizon

Lauréat de l'Appel à Projets de Recherche 2015 « vers des Bâtiments 2020 »

avec le financement de

AIVC Webinar - Durability of building airtightness: Assessment through field measurements | 30 January 2020

