

Venticool
Se partour for resident venticables cooling

June 1st, 2021, Webinar – Resilient Ventilative Cooling in practice

VENTILATION - SUNPROTECTION - OUTDOOR

ivan.pollet@renson.be

About Renson

Belgian family business

- 112 years
- · Headquarters in Waregem
- Team of 1200 enthousiastic men & women
- Core business: ventilation, sunprotection
 & outdoor

VENTILATION - SUNPROTECTION - OUTDOOR

Products: background ventilation versus ventilative cooling

RENSON°
Creating healthy spaces

VENTILATION - SUNPROTECTION - OUTDOOR

Louvres for ventilative cooling

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Continuous louvre systems as façade cladding or ventilative cooling

VENTILATION - SUNPROTECTION - OUTDOOR

Connection of products towards smart buildings > servitization

Louvres: characteristics, testing and regulation?

Louvres: multi-functionality combined within simplicity

Simplicity

Number of horizontal or vertical fixed or adjustable blades (alu/wood)

Multi-functionality

- → Ventilative cooling (renewable)
- → Solar shading
- → Insect-proof
- → Rain-tightness
- → Persons from outdoors (burglary) or indoors (fall-through)
- → Fire/smoke control
- → Noise insulation
- → Outdoor pollution control (?)
- → Opportunities for creativity, integration, accents, ...

How to characterize?

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Testing and optimization of louvres performance

Aerodynamic and rain tightness characteristics (EN13030)

Water tightness and air flow rate

Table 3 — Penetration classes

Class	Effectiveness ε	Maximum allowed penetration of simulated rain $\label{eq:linear} \text{$I$-$h$}^{-1}\text{-$m$}^{-2}$	
Α	1 to 0,99	0,75	
В	0,989 to 0,95	3,75	
С	0,949 to 0,80	15,00	
D	Below 0,8	Greater than 15,00	

Table 4 — Discharge loss coefficient classification

Class	Discharge loss coefficient		
1	0,4 to 1,0		
2	0,3 to 0,399		
3	0,2 to 0,299		
4	0,199 and below		
NOTE The above classes also apply to entry loss coefficient.			

$$q_{v} = C_{d} A \sqrt{\frac{2\Delta p}{\rho}}$$

Testing and optimization of louvres performance

Aerodynamic and rain tightness characteristics (EN13030)

VENTILATION - SUNPROTECTION - OUTDOOR

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Testing and optimization of louvres performance

$$q_v = C_d A \sqrt{\frac{2\Delta p}{\rho}}$$
 Optimization based on CFD: air flow resistance \downarrow and/or water tightness \uparrow

VENTILATION - SUNPROTECTION - OUTDOOR

Ventilative cooling: quick design, rules of thumb

Air flow rate through opening:

$$q_v = C_d A \sqrt{\frac{2\Delta p}{\rho}}$$

Available natural pressure difference: ∆p ~ 1 to 2 Pa

Required air exchange rate:

q_v = 4 to 8 volumes/h

Area (m²) of louvre is known

Cooling capacity:

~ 5 W/m²/air exchange rate

• Temperature reduction during night in case of at least 10 $^{\circ}$ C Δ T between

max. indoor T and min. outdoor T: ~ 0,75 to 1 °C/(vol/h)

VENTILATION - SUNPROTECTION - OUTDOOR

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Louvres: flow resistance ↑ + usage or VC potential ↑

Resistance

Guarantee on higher operation time

Reduction of air flow rate

~ 50%

Fully openable windows (90°) instead of tilted (10%)

More in use during night and absence

~ higher utilization factor

On average, net effect of louvres on air exchange rate is mostly limited

VENTILATION - SUNPROTECTION - OUTDOOR

Testing and optimization of louvres performance

Sound insulation: sound reduction index Rw (EN ISO 10140 & 717)

VENTILATION - SUNPROTECTION - OUTDOOR

Testing and optimization of louvres performance

Burglary resistance of window openings (~ building assurances): RC class

- 7 Mechanical strength
- 7.1 Static loading.....
 7.2 Dynamic loading
- 7.2 Dynamic loading in resistance classes 1, 2 and 3.....
- 8 Manual burglary attempts

8 Manual burglary attempts

When tested in accordance with prEN 1630 using the tool sets and times specified in Table 6, the test specimen shall not fail at the resistance class 1 no manual test will be carried out. The tool set A1 is intended for preparation of the test specimen.

Table 6 — Tool sets and resistance time

Resistance class	Tool set (see prEN 1630:2009, Clause 7)	Resistance time min	Maximum total test time min
1	A1	-	-
2	A2	3	15
3	A3	5	20
4	A4	10	30
5	A5	15	40
6	A6	20	50

Testing and optimization of louvres performance

Barrier load testing / Fall prevention safety (EN13049)

Not to Scale

VENTILATION - SUNPROTECTION - OUTDOOR

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Integration of VC louvres within EPBD regulation

Impact of VC on overheating risk and PE consumption depending on:

Belgium (residential)

- Physical free area of VC openings
 (≥ 6,4% of room net floor area)
- Accessibility/burglary resistance
 (location, max opening, resistance class ≥ 2)
- Control possibilities

The Netherlands (all buildings)

- Physical free area of VC openings
- Accessibility/burglary resistance
 (location, may opening, resistance class)
 - (location, max opening, resistance class ≥ 2)
- Control possibilities
- Insect-proof requirement
- Rain tightness requirement (louvre, sensor)

Louvres applications in-situ

VENTILATION - SUNPROTECTION - OUTDOOR

Schools (Gent, Belgium)

Passive cooling measures, no active cooling, small or no occupation in summer

VENTILATION - SUNPROTECTION - OUTDOOR

Schools (Gent, Belgium)

VENTILATION - SUNPROTECTION - OUTDOOR

VENTILATION - SUNPROTECTION - OUTDOOR

Student homes (Campus Diemen Zuid, The Netherlands)

Acoustic insulation for intensive ventilation and ventilative cooling

Continuous louvre systems as façade cladding and VC louvre

Continuous louvre systems as façade cladding and VC louvre

International Lyceum > Luxembourg

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Private houses (Belgium)

Creating healthy spaces

Concept home of Renson (Waregem, Belgium)

Vertical blades, integration in façade

Privacy ↔ daylight

VENTILATION - SUNPROTECTION - OUTDOOR

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Louvre: movable/adjustable versus fixed

Movable/sliding louvre panels

Green office (Paris - France, 2011)

Adjustable/orientable blades

June 1st, 2021 - Webinar "Resilient Ventilative Cooling in practice"

Apartments (Weinfelden, Switzerland)

VENTILATION - SUNPROTECTION - OUTDOOR

June $\mathbf{1}^{\mathrm{st}}$, $\mathbf{2021}$ - Webinar "Resilient Ventilative Cooling in practice"

Combination of ventilative cooling and solar shading

Screens and awning

Screens on roof windows

Integrated screens

VENTILATION - SUNPROTECTION - OUTDOOR

Renson offices/showroom (Waregem, Belgium, 2002)

June 1st, 2021, Webinar – Resilient Ventilative Cooling in practice

VENTILATION - SUNPROTECTION - OUTDOOR

ivan.pollet@renson.be