

Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models A tropical case study

Maareva PAYET

PhD, head of the company's BEQ and R&D division LEU Réunion / associate researcher PIMENT, La Reunion University, France mp@leureunion.fr

ILET DU CENTRE

Maxime BOULINGUEZ

PhD student and co-head of R&D division LEU Réunion / PIMENT - La Reunion University, France maxime.boulinguez@univ-reunion.fr

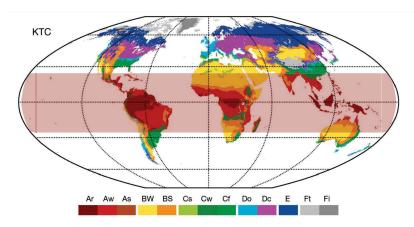
26 March 2024, Webinar – Exploring window opening behaviour for optimal cooling and thermal comfort

LEU REUNION, PART OF THE ILET DU CENTRE GROUP

BIOCLIMATIC BUILDING DESIGN IN HOT AND HUMID TROPICAL CLIMATES

- Solar protection
- Natural ventilation to reduce the use of active and energy-consuming devices
- Solutions to couple **devices** when exclusive use of natural ventilation is not sufficient

Several ongoing research projects, including a thesis on the comfort of mixed-mode buildings and a thesis defended in 2022 on occupant behaviours



DEFINITION OF HUMID TROPICAL CLIMATE

FEATURES and ISSUES

According to Koppen-Trewartha

- Average monthly temperature > 18°C
- Rainfall threshold > 60mm over several months

The surface area of Aw subclass territories has increased since 1965-1994

(Belda et al. 2014)

50% of the population in the intertropical zone forecasted by 2050

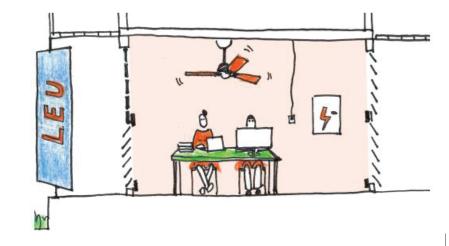
(University f James Cook, Australia, 2014)

75% of the population in urban areas (Rodrigues et al., 2019)

Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

26 March 2024, Webinar - Exploring window opening behaviour for optimal cooling and thermal comfort

MIXED MODE BUILDINGS

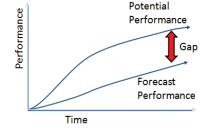

DEFINITIONS

Passive cooling systems -> Openings Low-energy cooling systems -> Ceiling Fans High-energy mechanical systems -> HVAC

Zoned Mixte Mode Building

(Brager, 2006)

Different controls (Raja, 2014)



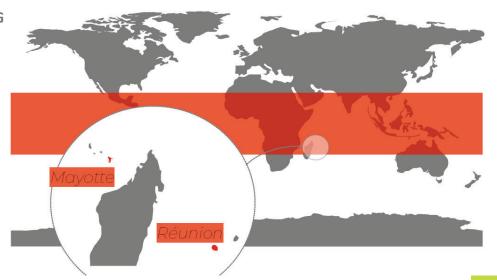
USER BEHAVIOUR IN MIXED MODE BUILDINGS

How to assess user behaviour in mixed-mode buildings operating with ventilation ?

How to estimate the presence of users on openings and ceiling fans during the design phase ?

1- Model behaviours based on measured data

2- Integrate these behavioural models into a building model


Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

26 March 2024, Webinar - Exploring window opening behaviour for optimal cooling and thermal comfort

CASE STUDY IN REUNION ISLAND

ILET DU CENTRE OFFICE BUILDING

CASE STUDY IN REUNION ISLAND

ILET DU CENTRE OFFICE BUILDING

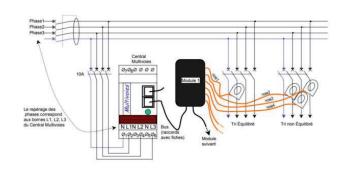
Two open plan floors (NV)
Singles offices (NV or AC)
Meeting rooms (AC)

310 m²

IT room (AC)

Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

venticool


26 March 2024, Webinar – Exploring window opening behaviour for optimal cooling and thermal comfort

CASE STUDY IN REUNION ISLAND

FIELD MEASUREMENTS

- 37 position sensors NODON (ENOCEAN)
- Irregular timestamp
- 2 states [0 ou 1]

- Energy meters OMEGAWATT
- 1 min timestamp
- Ceiling fan power [W] and offices plug [W]

CASE STUDY IN REUNION ISLAND

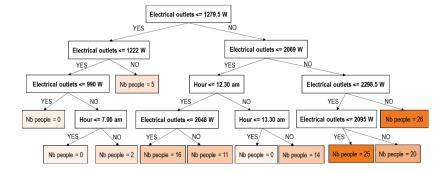
FIELD MEASUREMENTS

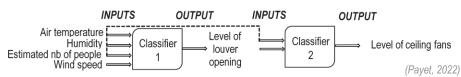
- 9 TESTO 174H temp/rh sensors
- Regular timestamp
 - Air Temperature (+/- 0.5°C) et relative humidity (+/- 3 %HR)

Meteorological station (Less than 1km far from site)

Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

venticool

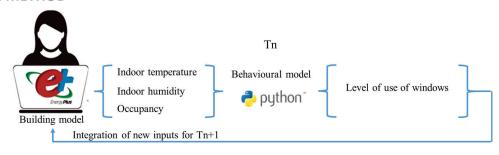

26 March 2024, Webinar - Exploring window opening behaviour for optimal cooling and thermal comfort


OCCUPATION AND BEHAVIOURS MODELS

CLASSIFICATION METHODS

Occupation model (Decision Tree)

Ceiling fans and openings models (Random forest)



IMPLEMENTING BEHAVIOURAL MODELS IN ENERGYPLUS

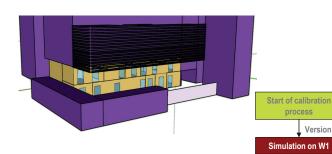
PYTHON PLUGIN METHOD

Method	Ease of implementation	Flexibility
Direct modelling	++++	+
Code customization	++	++
Customization of Core	+	+++
code		
Co-simulation	++	++++
Python plugin	+++	++++

Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

Version 1

Error analysis


Satisfactory values

Yes Calibrated model

26 March 2024, Webinar - Exploring window opening behaviour for optimal cooling and thermal comfort

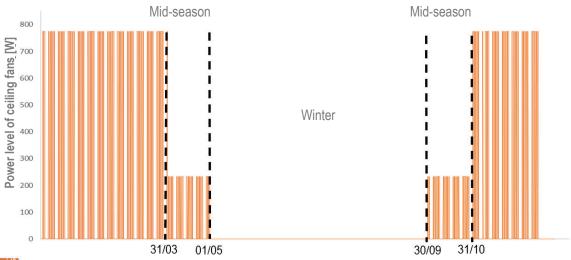
BUILDING ENERGY MODEL

VALIDATION (based on indoor conditions)

Week simulated	Step	From	То	Season	Internal heat gains from users
W1	Calibration	20/12/2020	27/12/2020	Summer	No
W2	Validation	01/12/2020	08/12/2020	Summer	Yes
W3	Validation	06/07/2020	13/07/2020	Winter	Yes
W4	Validation	05/10/2020	12/10/2020	Mid-season	Yes

Validation results	Standards
NMBEh ≤ 5.3 %	NMBEh ≤ 10 %
CV(RMSE)h ≤ 6.6 %	CV(RMSE)h ≤ 30 %
MADh ≤ 2.8 °C	(Baba, 2022)
MBEh ≤ 1.2 °C	(Baba, 2022)

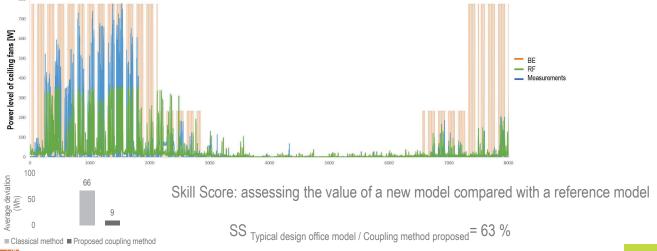
- ASHARE Guideline 14 (Measurement and Energy Demand)
- Int. Measurement & Verification protocol recommanded by French Energy Agency ADEME
- Mean Bias Error & Mean Absolute Deviation



Version 1 + i

CONVENTIONAL DESIGN OFFICE MODEL FOR CEILING FAN USE

BASELINE METHOD


Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

26 March 2024, Webinar - Exploring window opening behaviour for optimal cooling and thermal comfort

COMPARISON WITH OUR RESULTS

PROPOSED COUPLING METHOD NOTED in GREEN / baseline orange

TO CONCLUDE

LIMITS OF THE PRESENT WORK

- Lack of generalisation capabilities
- Only NV + CF has been modeled so far (no AC+CF)
- Better estimate Ceiling Fans use but still need to improve related energy use for each predicted class

PERSPECTIVES

- Extend field measurement studies to other building types and user categories to better teach models
- Add a level of complexity for mixed-mode cooled building with AC
- Investigate new way to estimate class energy use (seasonal class / monthly class, add model input parameter(s))

Coupling methodology of windows and ceiling fan occupant behaviour models with building energy models: a tropical case study

venticool

26 March 2024, Webinar – Exploring window opening behaviour for optimal cooling and thermal comfort

Thank you for your attention

Further readings:

Payet, Maareva, M. Boulinguez, M. David, P. Lauret, and F. Garde, 'Windows and ceiling fan occupant behaviour model coupling methodology with building energy models, a tropical case study', in Ventilation, IEQ and health in sustainable buildings, Copenhaguen Danemark, 2023

M. Boulinguez, O. Marc, and J. Castaing-Lasvignottes, 'Development of a simplified model for evaluating refrigeration capacity and power consumption of air conditioning units based on heat exchanger entropic temperature definition', presented at the International Congress of Refrigeration 2023, Paris, 2023. doi: 10.18462/iir.icr.2023.0781

Payet, M., 2022. Simulation du comportement des usagers dans les bâtiments tertiaires à faible consommation énergétique, en zone tropicale (phdthesis). University of la Reunion.

Payet, M., David, M., Lauret, P., Amayri, M., Ploix, S., Garde, F., 2022. *Modelling of occupant behaviour in non-residential mixed-mode buildings: The distinctive features of tropical climates.* Energy and Buildings 259, 111895. https://doi.org/10.1016/j.enbuild.2022.111895

